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a b s t r a c t

We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-
dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained
through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of
computing the electronic centroid as well as the mean square displacement. We observe that the elec-

relation between the group velocity of the wave packet and the applied electrical pulses. We compare
those numerical calculations with a semi-classical approach.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of a quantum wave-packet on a one-
dimensional model under effect of an electric field is a hot
topic with several applications in general solid state physics [1–
21]. Originally studied by Bloch and Zener about 70 years ago, the
most famous phenomenology was obtained by investigating the
effect of a constant electric field (DC) under the electronic
dynamics in crystalline systems. The main result is the existence
of a coherent oscillatory motion with frequency equal to intensity
of the static electric field, also called Bloch Oscillations (BO). The
experimental observation it was achieved in semiconductor
super-lattices only in the nineties [2]. Due to technological
advances, BOs have been experimentally studied in other sys-
tems, such as Bose–Einstein condensates [3], ultra-cold atoms [4]
and optical super-lattices [5]. Within the theoretical point of view
, an interesting analysis about the motion of a charged particle on
a lattice in the presence of a generic electric field it was done in
ref. [8]. The authors demonstrated the presence of a dynamic
localization whenever the ratio of the magnitude and the fre-
quency of the electric field is a root of the ordinary Bessel func-
tion of order [8]. The effect of scattering caused by imperfections
of the lattice it was considered in ref. [9]. In ref. [11] it was shown
a detailed analysis of the coherent electronic dynamics under
effect of electric static and time-periodic (AC) fields. The authors
demonstrated the possibility of to “push” a Gaussian wave-packet
by using a oscillating field with frequency tuned at the Bloch
frequency [11]. Recently, the properties of Bloch-oscillations in
non-Hermitian lattices with a non-vanishing imaginary part of
the band dispersion curve it was investigated in ref. [12]. The
authors demonstrated by using a generalized acceleration
theorem that a wave packet with narrow spectral distribution
undergoes a periodic motion, but following a closed orbit in the
complex plane. The competition between electron–electron
interaction, electric field effect and dissipation terms it was stu-
died in ref. [13]. By using the Keldysh Greens functions in cluster
perturbation theory, the steady-state current it was computed.
The authors demonstrated that the current properties are con-
trolled by the Wannier-Stark resonances due to anti-
ferromagnetic correlations [13].

The effect of the on-site Hubbard interaction U on the Bloch
oscillations of two electrons under effect of an external electric
field was investigated in refs. [16–18]. By solving the time-
dependent Schrödinger equation for an initially localized two-
electron state it was proven that the possibility of the wave
packet develops Bloch oscillations where the dominant frequency
is the twice of the Bloch frequency predicted by semi-classical
approach [17]. It was proposed that this effect is strongly related
with the set of two-electron bound states that appear for U40.
That hypothesis was investigated in detailed and proven in ref.
[18]. Experimental investigations of Bloch oscillations in optical
lattice and ring cavity were done in refs. [20,21]. By using inter-
acting atoms in optical lattices, it was observed strongly corre-
lated Bloch oscillations as well as correlations in two-particle
quantum movement [21]. In special, the experiment conducted in
ref. [21] proved the existence of Bloch oscillations with double
frequency, previously obtained in ref. [17] through theoretical
experiments.

In ref. [22] it was proposed that a superposition of a static field
and a harmonic one can promote electronic dynamics in low-
dimensional systems. It was also shown that the electronic velo-
city depends on the magnitudes of the AC and DC field
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components and the initial phase of the AC field. Transport over
macroscopic distances has been recently reported in Bose-Einstein
condensates with weak interaction in a tilted lattice under
simultaneous influence of a DC and AC fields [23]. In this work we
provide further studies about the specificity of the electronic
dynamics under effect of time-dependent electric fields. We con-
sider an electron moving in a regular one-dimensional(1D) lattice
under effect of an external electric field F(t). The external field
consists of a Gaussian-pulse. We emphasize that pulsed external
fields (including Gaussian–Pulses) have been used in several
contexts of science [24–31]. For example, the effect of ultra short
electric pulses on biological cells, tissues, and organs has attracted
a great interest [29,30]. In our work, we will follow the time
evolution of an initially Gaussian electronic wave packet under
effect of an external Gaussian-electric pulse. We will compute
typical tools that characterized the wave-packet dynamics along
the chain, namely the electron's position and the mean-square
displacement. Our calculations demonstrated an unusual electron
dynamics quite related with the kind of pulse electric field we
have considered. Our analysis suggests that the electrical pulse is
able to promote a interesting electronic dynamics along the chain.
Results revealed that the velocity of the particle can be controlled
through the type electric pulses applied and it is possible to easily
speed up or slow down the electron.
Fig. 1. (Color online) Time evolution of the wave packet with N¼400 sites. The
initial condition was a gaussian wave packet width σ ¼ 1:0. We have used four
pulses each one with impulses I¼ π=2. The pulses were applied at times τ¼ 10;25
;45;55 time units.
2. Time-dependent Schrödinger equation and formalism

Our model consists of an electron moving in a regular one-
dimensional chain with N sites driven by an external field F(t). The
internal distance between the nearest neighbors is a. The tight-
binding Hamiltonian that describe our model can be written as

H ¼ J
XN
n ¼ 1

ðjn〉〈nþ1j þ jnþ1〉〈nj Þ
XN
n ¼ 1

ðϵn�eFðtÞnaÞjn〉〈nj ; ð1Þ

where jn〉 is a Wannier state localized at site i with energy ϵn, J is
the inter-site coupling restricted to nearest-neighbors, e is the
particle charge. The temporal evolution of the wave-function
components in the Wannier representation ðjψ ðtÞ〉¼P

nψn jn〉Þ is
governed by the time-dependent Schrödinger equation

i _ψ n ¼ψnþ1þψn�1�eFðtÞnψn: ð2Þ
Here, we will use units such that ℏ¼ e¼ a¼ J ¼ 1. The on-site
energies ϵn were taken as the reference energy ðϵn ¼ 0Þ and time is
expressed in units of ℏ=J. The external field consists of a Gaussian-
pulse [31], which can be expressed as

FðtÞ ¼ BðρÞ exp �ðt�τÞ2
4ρ2

" #
; ð3Þ

where ρ controls the duration of each pulse and τ is the time of
reference. We can observe that for a finite and small ρ and a single
value of τ, F(t) represent a single pulse around t � τ. We are
interested in consider a collections of pulses, i.e., we will consider
some distinct values of τ. The above set of equations were solved
numerically by using fourth order Runge–Kutta method with step-
size about 10�4 in order to to keep the wave-function norm con-
servation ð1�P

n jψnðtÞj 2r10�13Þ along the entire time interval
considered. The initial wave-packet will be consider a Gaussian
wave packet with width σ defined as

ψnðt ¼ 0Þ ¼ 1
AðσÞ exp �ðn�n0Þ2

4σ2

" #
; ð4Þ

where the initial position of the particle (n0) is the center of chain
(i.e n0 ¼N=2). After solving the set of equations we will compute
the centroid xðtÞ and the mean-square displacement ξðtÞ i.e.,
typical quantities that can bring information about the eigenstates
and wave-packet time-evolution. These tools are defined as:

xðtÞ ¼
X
n
njψnðtÞj 2; ð5Þ

and

ξðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n
½n�xðtÞ�2 jψnðtÞj 2

r
ð6Þ

The centroid xðtÞ represent the electronic position and ξðtÞ is a
measurement of the spread of the wave-function. We will also
analyzing the wave-function profile jψnðtÞj 2 versus t and n in
order to understand better the effect of Gaussian-pulse electric
field under the electronic dynamics.
3. Results

We will show initially our results for the temporal wave packet
profile jψnðtÞj 2 versus t and n (see Fig. 1) . Calculations were done
for N¼400. The initial wave packet it was a Gaussian with σ ¼ 1:0.
In our first numerical experiment we have considered four electric
pulses with ρ¼ 1, and τ¼ 10;25;45;55 time units. We adjusted
the value of Bðρ¼ 1Þ in order to impose that the impulse I of each
pulse is given by: I¼ R1

�1 FðtÞ dt ¼ π=2. In fig. 1 we observe the
behavior of the electronic function in time and space. We note that
in the early stages of temporal evolution ðto10Þ the wave packet
widens on the lattice. For short times, the electric field is absent
and therefore the wave-function moves without any interaction.
However, after the first pulse be applied, the wave packet seems to
be “pushed ” for one of the chain edges. We observe that this
driven motion is stopped after the application of the second pulse
(t¼25). After the second pulse, the wave packet seems to develops
movement with small (almost null) group velocity. We also
observe a kind of ondulatory behavior. After the third pulse at
t¼45 a counter-intuitive behavior is observed. The particle restarts
its movement however, in the opposite orientation. For t¼55 time
units, the wave packet is subjected to a new electric field pulse and
an interruption of the particle movement can be observed again.
This behavior can be understood following semi-classical
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Fig. 3. (a,b) Numerical calculations of the centroid and mean square displacement.
The experiments were done by considering two distinct types of time dependent
electric field: The first one is a sequence of four pulses each one with impulse
I¼ π=4 (see results showed in solid line and the electric field profile in (c)); the
second case is a sequence of two pulses each one with I¼ π=2 (see results in dashed
line and the electric field profile (d)). Calculations were done for an initial Gaussian
wave packet with σ ¼ 1:0 and N¼400.
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arguments. For a particle of charge e, we can use the acceleration
theorem and written the wave vector k as :

k¼ koþ
e
ℏ

Z tf

ti
FðtÞ dt: ð7Þ

The group velocity of wave-packet centered around some k0 state
is given by the gradient of the dispersion relation

vðk0Þ ¼ 1
ℏ
∂EðkÞ
∂k

����
k0
: ð8Þ

Therefore, by using the energy dispersion obtained in our case
ðEðkÞ ¼ 2J cos ðkaÞÞ, we can written vðkÞ as

vðkÞ ¼ �2Ja
ℏ

sin koaþ
ea
ℏ
I

� �
; ð9Þ

where I ¼ R tf
ti FðtÞ dt is the impulse. Therefore by using this semi-

classical formalism we can understand the effect of pulsed electric
field on the electronic transport. We can observe that after the first
pulse be applied, the wave packet changes its initial wave vector
from ðk0 ¼ 0Þ to k¼ π=2 thus implying in a change of its group
velocity. Following the same arguments, we can conclude that,
after the second pulse be applied, the wave-vector change to k¼ π,
in good agreements with the absence of group velocity found in
Fig. 1. The change of orientation found after the third pulse be
applied is related with o wave-vector values k¼ 3π=2. After the
fourth pulse, the wave-vector changes to k¼ 2π and the group
velocity vanishes again in good agreements with Fig. 1. A more
quantitative study is shown at Fig. 2. We show in Fig. 2(a) the plot
of the electric field versus time. We can see clearly that the four
pulses were considered for t ¼ 10;25;45;55 (the same case as in
Fig. 1). In Fig. 2(b) and (c) we plot respectively the centroid and the
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Fig. 2. Calculations of centroid and the mean square displacement for the same
case of the Fig. 1. In (a) we plot the electric field versus time. We can see clearly the
four pulses considered for t ¼ 10;25;45;55.
mean-square displacement versus time (t). In good agreements
with the description showed in Fig. 1, the centroid displays an
interesting dynamics, strongly dependent on the electric pulses.
The mean-square displacement dynamics reveals an increasing for
short times (i.e. , in the absence of electric field). After the pulses
are applied, this tendency is weakened or even reversed. Due to
the change in the movement direction, the electronic wave-packet
suffers interference and can decreases the width ξ as can be seen
in Fig. 2c. In order to elucidate better the correspondence between
the quantum mechanical description and the semi-classical
approach, we shown in Fig. 3(a,b) the electronic centroid xðtÞ
and ξðtÞ for two distinct experiments. We consider two distinct
types of time dependent electric field: the first one is a sequence of
four pulses each one with impulse I ¼ π=4. Our calculations are
shown in Fig. 3(a,b) (solid line) and the electric field temporal
profile can be found in Fig. 3(c).The second experiment we have
performed consisted of a sequence of two pulses each one with
I¼ π=2 (see results in Fig. 3(a,b) dashed line). The electric field
profile can be found in Fig. 3(d). Calculations were done for an
initial wave packet with σ ¼ 1:0 and N¼400. We emphasize that
the total impulse transferred for the wave-packet in both experi-
ments was 2π therefore, from the qualitatively point of view , the
results should be similar. By analyzing the Fig. 3(a,b) we observed
a qualitative agreements between the dashed and solid curve.
However, from the quantitative point of view, we observe that the
case with I¼ π=2 promotes a biggest change at the wave-packet's
velocity, in good agreements with the semi-classical approach.
Moreover, we also observed that the mean square displacement ξ
exhibits a roughly controlled behavior. In contrast with the case
without electric field in which that the electron wave-packet
spreads ballistically , the wave-packet here seems to keep trap-
ped in a finite fraction of the lattice. It is an interesting key point
because suggests that the pulsed electric field can be used to
“push” the wave-packet and keeping its width finite. We can use
this superposition of pulsed electric fields as tweezers to electronic
manipulation.

In Fig. 4 we investigated the time evolution of an initial gaussian
wave-packet with σ ¼ 1 and 4 under effect of a single electric field
pulse with several values of impulse I. In Fig. 4(a,c) we plot the
centroid versus time for I¼ π=2;3π=2;5π=4;π=4;π. Calculations



Fig. 4. (a,c) The centroid versus time for an initial gaussian with σ ¼ 1 (a) and σ�4 (c) under effect of a single pulse with I¼ π=2;3π=2;5π=4; π=4; π. (b,d) the ratio between the
mean square displacement for long time and the initial mean square displacement ðξ1=ξ0Þ ; calculations were done for σ ¼ 1 (b) and σ�4 (d). (e) The group velocity versus I
for σ ¼ 1 up to 8.
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were done for σ ¼ 1(a) and σ ¼ 4(c). We observe that a single pulse
with impulse I is able to promote the movement of the particle in
several directions of the chain. The direction and the electronic
velocity is strongly related with the intensity of impulse, in good
agreements with our semi-classical formalism (see Eq. (9)). How-
ever, it is interesting to investigate also the wave-packet spread and
its relation with the applied pulsed electric field. In Fig. 4(b,d)
we plot the ratio ξ1=ξ0 versus the impulse I. Here, ξ1 represent the
mean square displacement for long time and ξ0 the mean square
displacement in the early stage of the time evolution ðt � 0Þ.
We emphasize that the border effect here are numerically negli-
gible. Our results reveals a richness of properties and an interesting
dependence of the wave-packet spread with the impulse I. For both
values of σ we observe that for the most values of I, the wave-
packet spreads within the chain. For I � π=2 and 3π=2 we can
observe a decreasing of the ratio ξ1=ξ0. For σ ¼ 4 we can see that
the wave-packet spreads less than the case with σ ¼ 1 and for I �
π=2 and 3π=2 does not spread ðξ1 � ξ0Þ. We can give some heur-
istic arguments to understand those previous finds. For large σ (e.g.
σ ¼ 4), the initial wave-packet is narrow in frequencies. Therefore,
for σ⪢1, the initial wave-packet is a superposition of modes with
small group velocity and therefore, the mobility is smaller thus
promoting the decreasing of ratio ξ1=ξ0. For I � π=2 and 3π=2 we
emphasize that the group velocity for these cases is maximum (see
Eq. (9)) therefore, the intrinsic interference of the wave-packet
during the push promotes the drastic decreasing of the mean
square displacement. Fig. 4(e) shows the group velocity for each
value of impulse I. The sine behavior of the group velocity is in good
agreements with the semi-classical prediction described in the
Eq. (9). We highlight these two factors as essential for using this
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technique for manipulating particles in lattices. So the velocity of
the particle and its position within the lattice become predictable
and controllable through adjustments to electric pulses applied.
4. Summary and conclusions

In this work we have considered a one-electron wave-packet
confined in a regular one-dimensional chain under effect of an
external time- dependent electric field F(t). The external electric
field F(t) consisted of a collection of short Gaussian-pulses. We
have followed the time evolution of an initially Gaussian wave
packet and compute the electronic positions and the wave-packet
spread. The Schrödinger equation it was solved by using a stan-
dard fourth order Runge–Kutta formalism. The numerical valida-
tion it was obtained by checking the wave-function normalization
during the integration. Our calculations suggest that the electrical
pulse can promote a new type of electronic dynamics along the
chain. Our calculations also indicate that the velocity of the par-
ticle can be controlled by the specifities of the applied electric
pulses . In our numerical experiments we have demonstrated the
possibility of driving the electron along the chain, reverse the
direction and also to brake the particle during a short interval. We
also provide a detailed description of the time-dependent beha-
vior of the width of the wave-function. Our calculations indicate
the possibility of to keep the wave-function trapped in a finite
fraction of lattice even at the cases in which that the centroid
exhibits mobility. We emphasize that our calculations are inter-
esting within the context of manipulate charged particles in low-
dimensional systems. We have used a simple semi-classical
formalism that explains in detail the phenomenology studied
here. Our results provide a good agreement between the numer-
ical calculations and semi-classical investigation. We hope that our
work encourages further investigation about the manipulation of
particles in low-dimensional systems using pulsed electric fields.
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