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A B S T R A C T

We study the electronic wavepacket dynamic in a two-dimensional lattice under the influence of off-diagonal
nonlinearity in the regime of diagonal disorder larger than the crystalline bandwidth. By using numerical calcu-
lations of the participation function, the mean square displacement and the return probability, we show that the
nonlinearity induces a sub-diffusive spreading of the wavepacket. We also report the existence of an anomalous
nonlinear strength at which the wavepacket remains strongly localized.

1. Introduction

One of the fundamental phenomenon in solid state physics is related
to the electronic wavepacket propagation in disordered structures. The
localization theory, pioneered by P.W. Anderson, points out the local-
ized nature of a non-interacting electron wavepacket due to a strong
diagonal disorder [1–3]. Although the initial proposal has been devoted
to electronic properties, the phenomenon of wave localization in dis-
ordered media has been observed in several other branches, such as
electromagnetic [4,5] and acoustic [6] waves.

In particular, studies of matter waves localization [7] have provided
an excellent framework to answer challenging open questions of con-
densed matter. A remarkable characteristic in these systems is the rele-
vance of nonlinear effects. In particular, the evolution of a Bose-Einstein
Condensate can be described by using the nonlinear Gross-Pitaevskii
equation [8]. On the other hand, the nonlinearity in the Schrödinger
equation of electronic systems has its origin in the electron interac-
tion with the vibrational modes of the lattice [9,10]. This mechanism
is of great interest in state solid physics, since the presence of non-
linearity may trap a wavepacket in a finite fraction of the lattice, a
phenomenon called self-trapping [9,10]. It occurs when the strength of
the nonlinearity exceeds a critical value. In addition, it is worth men-
tioning that a similar scenario holds for the propagation of nonlinear
waves in photonic lattices [5,11]. As such, the study of wave dynam-
ics in media involving simultaneously nonlinearity and disorder plays a
relevant role in condensed matter, both in the theoretical [7,9,12–16]
and experimental frameworks [7,11,17,18].
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The competition between disorder and nonlinearity leads to a series
of interesting features. It was demonstrated that in 1D disordered sys-
tems, the Anderson localization is destroyed for a specific range of
values of the nonlinearity parameter [12,19]. A similar result was
reported for the spatio-temporal evolution of a wavepacket in disor-
dered nonlinear Schrödinger and anharmonic chains [20]. A system-
atic investigation of wave propagation in nonlinear disordered sys-
tems can be found in Refs. [21–27]. By considering the disordered dis-
crete nonlinear Schrödinger equation and a quartic Klein-Gordon chain
of coupled anharmonic oscillators, a general description of the one-
particle propagation within disordered nonlinear chains was obtained
[21]. Moreover, the propagation of nonlinear waves in two-dimensional
disordered lattices with tunable diagonal nonlinearity was reported
in Ref. [22]. It was demonstrated that nonlinear wavepackets spread
sub-diffusively. The authors also showed that the degree of localiza-
tion decreases as the strength of nonlinearity increases. In Ref. [23],
a general theory of localization in nonlinear disordered systems at the
zero-temperature limit was developed, firmly establishing that nonlin-
ear waves can indeed propagate in nonlinear disordered systems. It
is interesting to mention that, in spite of the literature has pointed
out the absence of Anderson localization in nonlinear disordered sys-
tems, the kind of diffusion was a controversial issue. In general lines,
some authors showed that the spread of a wavepacket starting from a
single-site excitation grows as t0.15 [21]. However, distinct time evo-
lutions were also obtained: t0.2 [12] or t0.25 [25] for example. This
controversy was clarified in Ref. [26]. The authors demonstrated that,
depending on the disorder strength and nonlinearity intensity, three dis-
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tinct regimes can appear: strong chaos, weak chaos and self-trapping.
Each regime exhibits distinct temporal behavior for the wavepacket
spreading [26]. Further, it has been recently unveiled the probabilis-
tic nature of the break up of Anderson localization in nonlinear dis-
ordered systems with the spreading dynamics being strongly depen-
dent of the disorder configuration [23]. Ref. [27] contains an inter-
esting and motivational review about the recent theoretical trends
within this field. Within the experimental context, a one-dimensional
lattice of coupled optical waveguides patterned on an ALGaAs sub-
strate was considered to investigate the evolution of linear and non-
linear waves in a realization of the Anderson model. By exciting a
pure localized mode and increasing the input beam power, the authors
reported that the nonlinearity tends to promote the propagation of
nonlinear modes [11]. Another experimental work showed that the
dynamics of matter waves in the presence of disorder and nonlinear-
ity also reveals a sub-diffusive behavior when a controllable repulsive
atom-atom interaction is added to an atomic Bose-Einstein Condensate
[28].

In general, the coupling between electrons and lattice vibrational
modes is expressed by diagonal nonlinearity on a tight binding
approach [12,19,29,30]. However, the electron-lattice coupling can
also result in off-diagonal terms [31–33]. Originally developed to study
electrical properties of polymers [31], the Su-Schrieffer-Heeger Hamil-
tonian was used to analyze a one-dimensional nonlinear Schrödinger
equation containing off-diagonal nonlinearity and diagonal disorder
[32]. Recent results showed that the wavepacket displays a long-time
sub-diffusive regime promoted by the nonlinear off-diagonal term [33].
The authors also showed that only those states around the band center
are susceptible to the presence of an off-diagonal nonlinear contribu-
tion.

Aiming to understand the competition between nonlinearity and
diagonal disorder on the electronic wavepacket dynamics, we provide a
detailed study of the wavepacket propagation in a 2D disordered non-
linear square lattice. The existing disorder in the lattice has composi-
tional origin, i.e., it is represented on the diagonal term of the Hamil-
tonian. We take into account the coupling of the electronic wavepacket
with the acoustic phonons, originating the off-diagonal nonlinear term.
Through the participation function and mean square displacement, we
show that the nonlinearity induces a sub-diffusive spreading of the
wavepacket. However, the sub-diffusive regime only develops after a
long waiting time for small nonlinearities. We also report the existence
of an anomalous point at which the wavepacket remains trapped at the
initial position.

2. Model and formalism

We consider an electron moving in a two-dimensional (2d) square
lattice with diagonal disorder and coupled with the atomic vibrations.
Following the Su-Schrieffer-Heeger approach [31], we write the Hamil-
tonian of the electronic tight binding system, where the hopping inte-
grals depends on the relative molecular displacements [30,32]:

H =
∑
m,n

[
(q̇m,n)2

2
+ K

2
(qm,n − qm−1,n)2

]
+
∑
m,n

𝜖m,nc†m,ncm,n

+
∑
m,n

{(
Vm+1,nc†m+1,ncm,n + Vm,n+1c†m,n+1cm,n

+Vm−1,nc†m−1,ncm,n + Vm,n−1c†m,n−1cm,n

)}
, (1)

Here, Vm+𝜈,n+𝜋 = [V0 + 𝜏(qm,n − qm+𝜈,n+𝜋 )] (𝜈 and 𝜋 assume values −1,0
or 1), qm,n is the atomic displacement, V0 is the intrinsic hopping inte-
gral, 𝜏 is the electron-phonon coupling constant, 𝜖m,n is the on-site
energy of element (m,n) randomly distributed in the interval [−W∕2,
W∕2] with uniform probability and c†m,n and cm,n are the creation and
annihilation operators for the electron at the site m,n.

We assume that the electron is treated in the adiabatic approxi-
mation. Therefore lattice vibrations reach equilibrium on a time scale
much smaller than the evolution time of the electronic wavepacket.
In this regime (𝜏qm,n ∼ 𝜒 |𝜓m,n|2). Once stated these preliminary con-
siderations, we take the wavefunction in the Wannier representation|Ψ(t)⟩ = ∑

m,n𝜓m,n(t)|m, n⟩ to write the Schrödinger equation with a non-
linear hopping term

iℏ
d𝜓m,n

dt
= 𝜖m,n𝜓m,n

+ [V0 + 𝜒(|𝜓m,n|2 + |𝜓m+1,n|2)]𝜓m+1,n

+ [V0 + 𝜒(|𝜓m,n|2 + |𝜓m,n+1|2)]𝜓m,n+1

+ [V0 + 𝜒(|𝜓m,n|2 + |𝜓m−1,n|2)]𝜓m−1,n

+ [V0 + 𝜒(|𝜓m,n|2 + |𝜓m,n−1|2)]𝜓m,n−1 (2)

where the parameter 𝜒 controls the degree of nonlinearity, describ-
ing the effective electron-phonon coupling. Using a predictor-corrector
Adams-Bashforth-Moulton algorithm initialized by the Dormand-Prince
Runge-Kutta method of order eight [35], we solve this set of nonlin-
ear coupled differential equations. Our calculations for long times were
done by using the tenth-order Adams-Bashforth formalism as the pre-

Fig. 1. (a) Root-mean-square displacement and (b) participation function versus time, for diagonal disorder W = 16 and nonlinearity parameter 𝜒 = 0, 2, 4, 6 e 8. These two quantities
show a non-localized wavepacket in the Anderson sense when a nonlinear hopping is present, depicting a sub-diffusive spreading.
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dictor formula and the ninth-order Adams-Moulton procedure as the
corrector. The time step used here (Δt = 0.004) is satisfactory to solve
the set of nonlinear coupled differential equations with good preci-
sion. We checked at each time step the norm conservation, obtain-
ing (|1 −

∑
n,m|𝜓m,n|2| < 10−9) even for long times. We observed the

time-evolution of an initially localized wavepacket, i. e., |Ψ(t = 0)⟩ =∑
m,n𝜓m,n(t = 0)|m,n⟩, where 𝜓m,n(t = 0) = 𝛿m,N∕2𝛿n,N∕2.

In order to analyze some aspects related to the electronic
wavepacket dynamics, we first set it localized in the middle of the
alloy at t = 0, i. e. |Ψ(t = 0)⟩ = ∑

m,n𝜓m,n(t = 0)|m,n⟩, where 𝜓m,n(t =
0) = 𝛿m,N∕2𝛿n,N∕2. Then we used some standard tools as the return prob-
ability [29,36], the participation number and the root-mean-square dis-
placement. The return probability R(t) is defined as:

R(t) = |𝜓N∕2,N∕2(t)|2, (3)

where R(t) gives the probability of finding the electron at the posi-
tion corresponding to the center of the initial wavepacket. Thus, in
the long-time regime (we have used tmax ≈ 105 in our calculations),
R(tmax) → 0 means that the electronic wavefunction escapes from its
initial localization (N∕2,N∕2). Otherwise, at least a fraction of the elec-
tronic wavepacket remains localized in a self-trapped state when R(tmax)
saturates at a finite value. The participation number 𝜉 is defined as
[30,37],

𝜉(t) = 1
/∑

m,n
|𝜓m,n(t)|4. (4)

This measure provides an estimate of the number of base states where
the wavepacket is spread in time t. In particular, the asymptotic partic-
ipation number becomes size-independent for localized wavepackets.
Conversely, 𝜉(tmax) ∝ N2 corresponds to the regime where the packet is
delocalized over the lattice [37].

The root-mean-square displacement 𝜎(t) [36,38,39] is obtained as:

𝜎(t) =
√∑

m,n
[(m − m(t))2 + (n − n(t))2]|𝜓m,n(t)|2, (5)

with m(t) =
∑

m,nm|𝜓m,n(t)|2 and n(t) =
∑

m,nn|𝜓m,n(t)|2. We stress that
𝜎 ranges from 0 (a wavefunction fully localized in a single site) to
𝜎 ∝ N (a wavefunction extended over the entire lattice). The time evolu-
tion of the root-mean-square displacement usually follows a power law
𝜎(t) ∝ t𝛼 , characterizing the motion of the wavepacket as localized (𝛼 =
0.0), sub-diffusive (0 < 𝛼 < 1∕2), diffusive (𝛼 = 1∕2), super-diffusive

Fig. 2. Time evolution of the return probability R(t). The decay of R(t) with time t for all
positive values of 𝜒 is a signal of the sub-diffusive spreading shown in Fig. 1. For 𝜒 = 0
the wavepacket is localized in the Anderson sense, with the return probability remaining
close to unit.

Fig. 3. (a) Average extension of the wavepacket 𝜎m(tmax); (b) average participation num-
ber for long time 𝜉m(tmax); and (c) average return probability Rm(tmax) calculated for dif-
ferent values of 𝜒 and disorder amplitude W = 16. Main plots are for tmax = 105. The
insets show data for tmax = 104 and tmax = 105, unveiling that wavepacket localization is
only achieved in the linear limit of 𝜒 = 0 and in the anomalous point with 𝜒 = −1.

(1∕2 < 𝛼 < 1) and ballistic (𝛼 = 1) [40–42].

3. Results

In Fig. 1(a) and (b) we plot, respectively, the time evolution of
the root-mean-square displacement 𝜎(t) and participation function 𝜉(t).
We have considered, in both figures, several values of the off-diagonal
electron-phonon coupling constant 𝜒 at the strong disorder regime
i.e. the disorder width larger than the bandwidth (W > 8V0). In par-
ticular, we have chosen W = 16V0. In this strong disorder regime,
the wavepacket dynamics in systems with diagonal nonlinearity can
only show self-trapping or sub-diffusion, depending on the nonlinearity
strength [22,26]. In the absence of nonlinearity (𝜒 = 0), the wavepacket
does not spread. This is the signature of the usual Anderson local-
ization regime [43]. However, when the nonlinear hopping term is
switched on (𝜒 > 0), we get 𝜎(t) ∝ t0.15(2) and 𝜉(t) ∝ t0.33(2), thus sup-
porting an electronic sub-diffusive dynamics. The exponents in Fig. 1(a)
and (b) are roughly of the same order of magnitude of those found in
one-dimensional models with diagonal nonlinearity [13,21]. We also
found good agreement with those results found for two-dimensional
disordered models with diagonal nonlinearity [22]. Notice that the
sub-diffusion develops after a finite waiting time. The waiting time
grows when the nonlinearity strength is decreased. It diverges in the
limit 𝜒 → 0 signaling the strong Anderson localization in the linear

Fig. 4. Return probability after a long evolution time R(t ≈ 105) versus W and 𝜒 . The
maximum at 𝜒 = 0 stands for the usual Anderson localization in linear disordered sys-
tems. The narrow peak at 𝜒 = −1 signals the anomalous localization point.
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Fig. 5. (a) Root-mean-square displacement and (b) return probability versus time, for diagonal disorder W = 16 and nonlinearity parameter 𝜒 = −0.780, −0.82, −0.86, −0.9, −0.94 and
−0.98.

Fig. 6. (a) The autocorrelation function C(t) versus t∕tc. We observe that all curves for distinct values of 𝜒 collapse into a single curve, except by random fluctuations in the very
long-time regime. (b) Scaling behavior of the crossover time, indicating tc ∝ 1∕(1 + 𝜒 ). Here, the crossover times were measured in units of tc(𝜒 = 0.78).

regime.
A complementary analysis of the sub-diffusive character induced by

the nonlinearity is shown in Fig. 2, where we plot the return probabil-
ity as a function of time for same cases considered in Fig. 1. When the
electron-phonon interaction is absent, the return probability remains
finite. This result is a direct consequence of the strong Anderson local-
ization for W = 16. However, the presence of nonlinearity promotes the
wavepacket spreading, with the probability of finding the electron close
to the initial position vanishing as time evolves. It is important stress
that models with diagonal nonlinearity can exhibit a regime with self-
trapping above a nonlinearity threshold [26]. Within this self-trapping
regime, a finite fraction of the initial wavepacket remains localized,
while the remaining fraction spreads. This self-trapping regime was
characterized by the saturation of the participation number co-existing
with the sub-diffusive growth of the second moment [26]. In the
present two-dimensional disordered model with off-diagonal nonlinear-
ity such regime is absent, at least within the range of nonlinearities
we explored. Both participation number and second moment show a
sub-diffusive growth. In this sense, disordered systems with diagonal
and non-diagonal nonlinear contributions display distinct wavepacket
dynamical regimes.

In order to further characterize the suppression of Anderson local-
ization due to the presence of a non-diagonal nonlinearity, we show

in Fig. 3(a–c) respectively, the long-time behavior of the root-mean-
square displacement 𝜎(tmax ≈ 105), participation function 𝜉(tmax ≈ 105)
and return probability R(tmax ≈ 105) versus the nonlinear coupling. In
the insets, we show a detail of these curves in the vicinity of 𝜒 = 0
using two values for tmax. These show that the wavepacket delocal-
izes (increasing values of 𝜎(tmax) and 𝜉(tmax) with decreasing values of
R(tmax) as tmax increases) except at 𝜒 = 0 and at the anomalous point
𝜒 = −1 where the wavepacket remains strongly localized. For 𝜒 = −1,
the effective hopping vanishes, thus promoting the wavepacket trap-
ping. This behavior was also reported in 1D systems (see Ref. [32]).
Except in the close vicinity of 𝜒 ≈ −1, both 𝜎(tmax) curves and 𝜉(tmax)
show a monotonic growth as |𝜒 | increases. In other words, the higher
the value of |𝜒 |, the larger the anomalous diffusion coefficient is. In
addition, the weak asymmetry observed in Fig. 3(a) and (b) suggests
that the diffusion coefficient for positive values of 𝜒 is larger than in
the case of negative values of 𝜒 . In the case of negative 𝜒 , the hopping
term can be zero in some specific lattice sites, hence decreasing the
diffusion coefficient.

In order to obtain a complete description of the dependence of the
electronic dynamics with disorder and nonlinearity, we compute the
return probability after a long evolution time and for a wide range of
W and 𝜒 values. We plot, in Fig. 4, R(t ≈ 105) versus W and 𝜒 . By
analyzing Fig. 4 we observe that even for strong disorder (W > 10) the

9
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Fig. 7. Wavepacket snapshots at different stages of the time evolution, for 𝜒 = 0, 𝜒 ≈ −1 and 𝜒 = 10. From top to bottom, the pictures represent time instant t = 0.5, t = 100 and
t = 1000. The off-diagonal nonlinearity pushes the suppression of Anderson localization even at very large nonlinearities, while the wavepacket remains trapped for 𝜒 = −1.

nonlinearity promotes a decreasing return probability, thus suggesting
the existence of a non-localized electronic dynamics. The wide peak
around 𝜒 = 0 accounts for the usual Anderson localization in linear dis-
ordered systems. For negative values of 𝜒 , the fingerprint of the anoma-
lous point 𝜒 = −1 is signaled by a narrow peak. We emphasize that at
this special value of the nonlinearity, the effective hopping between
the site at which the initial state is fully localized and its four nearest
neighbor sites vanishes. Therefore the electron becomes fully trapped
at its initial position. For negative values of 𝜒 such that |𝜒 | > 1, there
is a nonzero probability of finding negative and positive hopping which
results in the observed asymmetry.

To better characterize the behavior around 𝜒 = −1, we plot the
root-mean-square displacement 𝜎(t) and the return probability R(t)
versus time for diagonal disorder W = 16 and nonlinearity parameter
𝜒 = −0.780, −0.82, −0.86, −0.9, −0.94 and −0.98 (see Fig. 5). We can
observe that the spread 𝜎 decreases as 𝜒 → −1, displaying an increasing
crossover time to the asymptotic sub-diffusive regime. Also, the wait-
ing time for the return probability start to decrease becomes larger as
this special nonlinearity value is approached. These results show that
the escaping of the wavepacket from its initial position is suppressed as
𝜒 → −1 due to the vanishing of the effective hopping to the neighbor-
ing sites. To unveil the scaling behavior of the waiting time around the
anomalous point 𝜒 = −1, we will use an auxiliary tool called autocorre-
lation function defined as C(t) = (1∕t) ∫ t

0 R(t)dt where R(t) represents the
return probability. The autocorrelation function and the return proba-
bility display similar trends. However, C(t) is less sensible to numerical
fluctuations. For 𝜒 = −1 the autocorrelation function remains C(t) = 1
in agreement with the strong localized behavior of the wavefunction. In
the vicinity of 𝜒 = −1 the autocorrelation function remains finite for a
short time scale t < tc and decreases after long times t > tc, thus suggest-
ing electronic diffusion at the long-time regime. In order to estimate the
dependence of the typical crossover time tc with the nonlinear strength,
we calculate the time evolution of C(t) for several values of 𝜒 around
−1. These curves shall exhibit a universal behavior when plotted against
the dimensionless time scale t∕tc. Our results for the data collapse of

the autocorrelation functions can be found in Fig. 6(a). We indeed can
see that all curves of C(t) collapse, except by the presence of random
fluctuations in the very long-time regime due to the strong underlying
nonlinearity. The estimated values of tc are plotted in Fig. 6(b), normal-
ized by tc(𝜒 = 0.78). Our calculations unveils a power-law scaling in
the form tc ∝ 1∕(1 + 𝜒). We would like call attention that this anoma-
lous behavior at 𝜒 = −1 is a direct consequence of the nonlinear con-
tribution to the effective hopping term we are using. In the case of an
initial fully localized wavepacket, the electronic hopping between the
initial site and its four nearest neighbor sites is zero and the electron
remains trapped at this site. For an initial Gaussian wavepacket with a
small width, the hopping between the initial position and its neighbors
will be small for short times, although finite. This will result in an ini-
tial crossover during which the electronic wavepacket slowly leaks out
from its initial position, becoming delocalized in the long-time regime.

The phenomenon of weakening of Anderson localization promoted
by off-diagonal nonlinearity is illustrated in Fig. 7. In this figure, we
provide wavepacket snapshots in three stages of its time evolution.
From top to bottom, the frames represent times t = 0.5, t = 100 and
t = 1000. For 𝜒 = 0 (left column) we observe the Anderson localization
regime. Due to strong disorder considered (W = 16), the wavepacket
remains localized. For 𝜒 ≈ −1 (middle column), localization of the
wavepacket is stronger than that of 𝜒 = 0, since the nonlinearity is
at the anomalous point 𝜒 = −1. As discussed above, this behavior is
related to the zero effective hopping between the initial site and the
nearest-neighbor sites. For 𝜒 = 10 (right column), we clearly see the
size of the wavepacket increasing. We emphasize that this situation cor-
responds to a sub-diffusive wavepacket spreading, as shown in Fig. 3.

4. Summary

In this work, we studied the electronic transport in a two-
dimensional disordered nonlinear lattice. We considered both the pres-
ence of compositional disorder i.e., a diagonal term of the Hamiltonian
with random coefficients uniformly distributed in the interval [−W∕2,

10
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W∕2] as well as the coupling between the electron wavepacket with
the lattice vibrations originating an off-diagonal nonlinear term. By
using numerical methods to solve the effective Schröedinger equation,
we computed several quantifying function to characterize the elec-
tronic dynamics. We found that nonlinearity induces a sub-diffusive
spread of the wavepacket. This result in agreement previous studies
of light propagation in a two-dimensional square photonic lattice that
reported that Anderson localization is always less pronounced in the
presence of nonlinearity [44]. However no self-trapping dynamics was
observed even for strong nonlinearities, contrasting with the behavior
shown in disordered systems with diagonal nonlinearity [26]. Further,
we reported strong localization in the vicinity of an anomalous point
at which the effective hopping term becomes vanishingly small. The
present results add to the general scenario supporting the suppression
of Anderson localization by nonlinear contributions. It would be inter-
esting to extend the present analysis to consider the influence of a super-
posed external field. The possibility of partial wavepacket trapping
may lead to the field-control of the electronic localization in nonlinear
media.
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11

http://refhub.elsevier.com/S0038-1098(17)30356-3/sref1
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref2
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref3
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib3a
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib3b
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref4
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib6a
http://refhub.elsevier.com/S0038-1098(17)30356-3/bibb
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib7a
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib7b
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib7c
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref5
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib9a
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib9b
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref6
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref7
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib10a
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib10b
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref8
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref9
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref10
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref11
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref12
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref13
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref14
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref15
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref16
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref17
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref18
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref19
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref20
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref21
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref22
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref23
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref24
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref25
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib31a
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib31b
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib31c
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref26
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref27
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib35a
http://refhub.elsevier.com/S0038-1098(17)30356-3/bib35b
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref29
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref30
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref31
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref32
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref33
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref34
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref35
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref36
http://refhub.elsevier.com/S0038-1098(17)30356-3/sref37

	Sub-diffusive spreading and anomalous localization in a 2D Anderson model with off-diagonal nonlinearity
	1. Introduction
	2. Model and formalism
	3. Results
	4. Summary
	References


