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A B S T R A C T

We investigate electronic transport in a one-dimensional model with four different types of atoms and long-
ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The
wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon
coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the
static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations.
When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak
electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short
periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A
slower sub-diffusive spreading takes place in the regime of weak correlations.

1. Introduction

Electronic transport in disordered lattices has been a subject of long
standing scientific interest over several decades [1–14]. Based on the
Anderson scaling theory, it is well stablished that there are no extended
eigenstates in low-dimensional systems for any degree of uncorrelated
disorder. However, it has been shown that low-dimensional disordered
systems can support extended states or a localization-delocalization
transition in the presence of short or long-range correlations in the
disorder distribution [15–34].

Several works on electronic dynamics in systems with correlated
disorder have been developed so far by considering a uniform
distribution of site energies in a finite range W W[− /2, /2]. However, a
few models have been introduced where the on-site energy assumes
only discrete values (e.g. binary and ternary models) [35–38]. The
Anderson model with a long-range correlated ternary disorder se-
quence was studied in [35]. The authors demonstrated by numerical
calculations that the system is an insulator if the ternary sequence is
generated totally at random. Nevertheless, by creating a ternary
diagonal disorder with long-range correlations, a localized-delocalized
phase transition was observed [35]. The effect of long-range correla-
tions in the sequence of capacitances of classical transmission lines
(TL) was studied by Lazo and Diez [36,37]. To generate the ternary
correlated distribution of capacitances, they used the Fourier filtering
method [36] and also the Ornstein-Uhlenbeck (OU) process [37]. In
both cases, a transition was observed from the non-conducting to the

conducting state of the TL induced by strong correlations. More
recently, a one-dimensional classical ternary harmonic chain with
mass distribution constructed from an OU process was studied by
[38]. It was reported that only the zero frequency mode can propagate
along the chain, thus contradicting previous works [35–37]. We
highlight that the study of models with discrete correlated disorder
exhibits considerable interest from the experimental point of view. The
possibility to generate real systems with a discrete correlated disorder
can be a feasible tool to make a comparison of theoretical and
experimental procedures, also allowing for the design of new materials
with adjustable properties.

In this work, we study the electronic transport in chains with a
correlated quaternary disorder distribution. The term “quaternary
disorder” represents a disorder distribution containing only four values
(ϵ1, ϵ2, ϵ3, ϵ4). We aim to evaluate the effects of an electric field and its
competition with the electron-lattice (i.e. electron-phonon) interaction.
In the absence of electron-phonon coupling, the electric field induces
wave-packet oscillations in the regime of strong correlations. We will
show evidences that electron-phonon scattering degrades the Bloch
oscillations. However, for weak electron-phonon coupling, the wave-
packet centroid still exhibits a coherent oscillatory dynamics for short
times. In the strong coupling regime, the wave-packet is carried
diffusively by the external field. In contrast, a slower sub-diffusive
wave-packet spreading will be characterized in the regime of weakly
correlated disorder.
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2. Model and formalism

We construct a quaternary correlated sequence by performing the
mapping of a continuous correlated series V{ }n in a discrete sequence of
four values (ϵ1, ϵ2, ϵ3, ϵ4). The continuous series V{ }n will be obtained
through a numerical procedure that generates the trace of a fractional
Brownian motion [17–20],
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The sequence of values V{ }n exhibits a power spectrum approximately
k1/ γ /2, and ϕk represents random phases distributed within the range

π[0, 2 ]. For γ = 0, the sequence is fairly uncorrelated. On the other
hand, γ > 0 introduces long-range correlations in the continuous
sequence V{ }n . According to the approach used in [17], we will perform
a normalization process such that V< > = 0n and
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2 2 . Once the correlated sequence V{ }n has been

built, we proceed to the construction of the quaternary correlated
sequence {ϵ }n . The mapping definition is given by:
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The parameter b shown in (2) controls the probability for each of
the four values (ϵ1, ϵ2, ϵ3, ϵ4) to appear on the quaternary distribution.
Here, we choose b ≤ 2, once 2 is approximately the largest value of the
Vn sequence after the normalization process. Moreover, we will use the
following representative values for on-site energies: ϵ = −21 , ϵ = −12 ,
ϵ = 13 and ϵ = 24 .

2.1. Electron-lattice interaction

Most of the previous works concerning electronic transport in
random systems investigated the nature of the electronic wave-function
and its dependence on the type of intrinsic disorder. Moreover, the
widely used approach considered the atomic lattice to be “frozen”, i.e.
the atoms are stopped (also known in the literature as the Born-
Oppenheimer approximation). By contrast, we will study the electronic
dynamics considering the presence of atomic vibrations. In other
words, we will consider the presence of an electron-phonon coupling.
This topic has been the subject of many studies [39–42]. We recall that
the electron dynamics will be described by the Anderson Hamiltonian,
and that the lattice will be addressed considering that the interaction
among nuclei is harmonic. Thus, the complete Hamiltonian can be
written as:
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Fig. 1. Average width σ t( ) of the electronic package versus time t (left panel) and its Fourier transform σ ω( ) (right panel) with α = 0, N = 500, F = 0.2 and b ranging from 0.5 up to 2.0.
We observe in (a) (γ = 0) and (b) (γ = 1), the absence of coherent oscillations in σ t( ). In (c) (γ = 2), σ t( ) shows nearly coherent oscillations. In (d) (γ = 3), there is a well defined

fundamental frequency ω F≈ for all values of b considered.
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The first and second terms represent the Anderson Hamiltonian for an
electron with on-site energy ζn and hopping term τn. In the present
model, we take into account the presence of a static electric field F
parallel to the chain, besides the presence of a quaternary disorder
distribution. Therefore, the on-site energy will considered as:
ζ F n N= ϵ + ( − /2)n n where ϵn is the correlated quaternary disorder
defined previously, and F n N( − /2) represents the potential energy due
to the electric field. The third and fourth terms are, respectively, the
kinetic and the potential energy of the lattice. Qn represents the
displacement and Pn is the momentum of the lattice element n. We
also consider in our calculations the massesmn of each atom, as well as
the spring constants βn, equal to unity. The coupling between the
electron and the lattice will be carried out through the hopping energy
τn. To introduce the electron-lattice coupling, we write the hopping
term as:

τ α Q Q= −exp[− ( − )],n n n+1 (4)

where α is a tunable parameter that controls the intensity of the
electron-lattice interaction (the electron-phonon coupling). Analyzing
Eq. (4), we notice that, if the atoms located at positions n and n + 1 are
approached (Q Q− < < 0n n+1 ), the hopping energy will be strong;
otherwise it will be very weak when they are apart (Q Q− > > 0n n+1 ).
τ = −1n corresponds to the typical scale of the hopping energy for
atoms separated exactly by one lattice spacing. The approach presented
in Eq. (4) is a generalization of that of Su, Schrieffer and Heeger (SSH)

[43]. For small vibrations, (4) retrieves the SSH model:
τ α Q Q α Q Q= −exp[− ( − )] ≈ −[1 − ( − )]n n n n n+1 +1 [43]. The time-de-

pendent Schrödinger equation H Ψ i| 〉 = d Ψ
dt
| 〉 can be easily written

considering the state Ψ f n| 〉 = ∑ | ′〉n n′ ′ . The classical part of Hamiltonian
(3) does not operate in the state Ψ| 〉, and the hopping energy is defined
by Eq. (4). Therefore, we have:
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In order to follow the time evolution of the lattice deformation, we will
use the standard Hamilton formalism. From the point of view of
classical mechanics, Hamilton's equation for the moment Pn is written,
in this problem, as Ṗ = −n

H
Q
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, where H〈 〉= Ψ H Ψ〈 | | 〉. The equation that

governs the lattice vibrations can be displayed in the form:

P β Q Q β Q Q α e f f f f

e f f f f

˙ = ( − ) − ( − ) + [ ( + )

− ( + )],

n n n n n n n
α Q Q

n n n n

α Q Q
n n n n

+1 −1 −1
− ( − ) †

+1 +1
†

− ( − )
−1

†
−1

†

n n

n n

+1

−1 (6)

The Schrödinger Eq. (5) and the previous lattice Eq. (6) can be solved
numerically through traditional numerical methods such as high-order
Runge-Kutta [44]. For α = 0, there is no electron-phonon coupling, and
the equations are decoupled. For α > 0, electron-phonon coupling
introduces a time-dependent hopping energy τn. After the numerical
solution of this set of equations, we compute the average position of the
electron and the wave-packet mean-square displacement. The average
position is defined by n t n f t< ( ) > = ∑ | ( )|n n

2. Then, the width σ of the
electronic packet is [45]:

∑σ t n n t f t( ) = ( − < ( ) > ) | ( ) | .
n

n
2 2

(7)

Fig. 2. (a) Wave-packet width σ t( ) versus time t for γ = 3, F = 0.2 and α = 0.05, 0.1, 0.3, 0.5. (b) The Fourier transform σ ω( ) for γ = 3, F = 0.2 and α = 0.05. (c) The rescaled mean wave-

packet width (σ t t( )/ 0.5) and (d) the rescaled mean position ( n t t< ( ) > / 0.5) versus t for γ = 3, F = 0.2 , b = 0.5 and α = 0.3 and 0.5, characterizing a diffusive-like spreading.
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which provides an estimate of the size of the wave-packet at time t.

3. Results and discussions

In the following, we present our main findings for the electronic
dynamics in a chain with quaternary correlated disorder, with parti-
cular emphasis on the effect of electron-lattice interaction under the
influence of an external electric field. Let us consider initially that the
electron is fully localized in the center of the chain. Thus, the amplitude
of the wave-function can be written as: f t δ( = 0) =n n N, /2. Solving the
Eqs. (5) and (6) in the presence of electron-phonon coupling and a
static electric field, we calculate the spread σ t( ) of the wave-packet as a
function of time. The size of the chain was set at N=500, and the values
of the correlation parameter were, in turn, γ = 0, 1, 2, 3. We choose for
the parameter b values belonging to the interval 0.5 until 2.0. Let us
consider first the case where there is no electron-lattice coupling
α( = 0). The results in Fig. 1 show the average spread σ t( ) of the
electronic package versus time (left panel) and its Fourier transform
(right panel). The electric field was considered F = 0.2. In the case of
uncorrelated disorder [γ = 0 shown in Fig. 1 (a)], the package does not
present coherent oscillations. This observation is confirmed in the
frequency diagram, where we observe a broad spectrum with several
spikes. This result is similar to those obtained in Fig. 1 (b) for γ = 1
(weak long-ranged correlated disorder). Again, the absence of coherent
oscillations is signalled by the broadness of the Fourier transform (see
1 (b)). For γ = 2 (Fig. 1 (c)), we observe the onset of nearly coherent
oscillations and a frequency spectrum typical of Bloch's oscillations
with a pronounced peak. We stress that the limit b = 2 represents a
turning point, when the disordered quaternary distribution approaches
to an almost non-random sequence. In Fig. 1 (d), we present our
results with γ = 3, representing the case of strong long-range correla-
tions leading to the emergence of delocalized states in the absence of an

external field. In this case, the field-driven oscillation pattern is quite
coherent. We clearly see the presence of a fundamental frequency
ω F≈ for all values of b considered. This result is a strong indication
that the oscillatory behavior observed in the left frame is compatible
with the Bloch oscillations scenario.

To analyze the influence of the coupling between the electron
dynamics and lattice vibrations, we start by focusing attention to the
case with strong correlations γ( > 2). In Fig. 2 we present the wave-
packet width σ t( ) versus time for γ = 3 , b=0.5, and
α = 0.05, 0.1, 0.3, 0.5. We stress that the computational solution of
the differential equations became extremely sensitive to the numerical
precision for large α. The results presented here are within the range of
values for which the numerical accuracy could be well controlled in the
entire range of integration time. In Fig. 2 (a) for α = 0.05 and 0.1, there
is an oscillatory behavior for short times. We note that the coherent
oscillation pattern disappears for intermediate and long times. The
Fourier transform in Fig. Fig. 2b still signals the presence of a
predominant frequency around ω F= reminiscent of Bloch oscilla-
tions. For larger electron-phonon coupling factors (α = 0.3 and 0.5),
these oscillations quickly vanish and the wave-packet width depicts a
continuous growth. The underlying mechanism leading to this cross-
over is that the atomic vibrations are still small at short times.
Consequently, the electric field term dominates the dynamics, thus
imposing the initial oscillating pattern. For longer propagation times,
the atomic vibrations become stronger, thus introducing a more
intense randomness into the hopping energy. Therefore, this time-
dependent disordered hopping distribution is likely to degrade the
regular electronic oscillations. Formally, the Bloch oscillations for long
times do not exist within this framework of quaternary correlated
disorder and electron-phonon coupling. In Fig. 2c–d we show that the
wave-packet width display a diffusive-like growth while its centroid is
diffusively carried by the static field.

Fig. 3. Wave-function profiles for γ = 3, F = 0.2 and α = 0 up to 0.6. Notice that increasing the electron-phonon coupling strength leads to a degradation of coherent oscillations.
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In Fig. 3 (a–e) we plot the wave-function distribution f t| ( ) |n
2 versus t

and n for γ F= 3, = 0.2 and α = 0 up to 0.6. For α = 0, the coherent
electronic oscillation is well defined, in good agreement with the
previous results shown in Fig. 1. However, for α > 0, we verify the
effect of scattering by atomic vibrations. We clearly observe the Bloch-
like oscillatory profile for short times. However, as time evolves, the
coherent oscillations are gradually degraded. In Fig. 4 we show a longer
run for the cases of strong couplings which clearly illustrates the
widening of the wave-packet while its centroid is driven by the external
field. The above results unveils that the effective dynamic disorder
associated with the coupling with lattice vibrations induces a diffusive-
like dynamics of the electronic wave-packet on which both the centroid
and width grow in time as t1/2.

We also investigated the electron-lattice coupling in the regime of
weak long-range correlations (γ < 2) on which the electronic states are
all exponentially localized in the zero-coupling limit and no-Bloch
oscillations are present. In this case (see Fig. 5), the action of the
relevant static disorder together with the coupling-induced dynamic
disorder results in a slower spreading of the wave-packet on which the
width and centroid evolve sub-diffusively, roughly as t1/3. This result is
similar the one previously reported to take place for field driven wave-
packets propagating in nonlinear chains [46].

4. Summary and conclusions

In summary, we studied the electronic wave-packet transport in
quaternary systems with correlated disorder. Our goal was to under-
stand the localization properties of the electronic wave-function. We
employed a methodology that allowed us to include the electron-lattice
interaction as well as the presence of an external electric field. In
general, we considered a one-dimensional model with four kinds of
atoms. The on-site diagonal energy at each of these atoms was given by
(ϵ , ϵ , ϵ , ϵ1 2 3 4). The distribution of these energies was chosen in order to
exhibit long-range correlations, resembling the trace of a fractional

Brownian motion with power spectrum S k k( ) ∝ γ− . Our analysis of the
effects of the field and its competition with the scattering by lattice
vibrations presented several instructive features. In the absence of
electron-phonon coupling α = 0, the presence of an electric field
produces coherent oscillations if the diagonal disorder has strong
long-range correlations (with spectral exponent γ > 2). When the
electron is coupled to the lattice vibrations, phonon scattering degrades
the Bloch oscillations. In the regime of strong long-range correlations,
the electron-lattice coupling leads to a diffusive-like spread and
displacement of the electronic wave-packet. In contrast, a slower sub-
diffusive dynamics develops in a weak long-range correlated potential
with γ < 2. It is important to stress that the present results have been
obtained in the framework of non-interacting electrons. However,
electron-electron interaction is known to strongly influence the nature
of electronic states in disordered systems [47,48]. It would be valuable
to have future efforts devoted to study the competition between
electron-electron and electron-phonon interactions in random media.
It is possible that the emergence of bounded two-electron states can
suppress the coherence loss due to phonon scattering. We hope to
address this relevant issue in a future contribution.
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