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We considered the dynamics of an initially localized wave packet in one-dimensional disordered chains

model for lattice vibrations. We also introduce an electron–lattice interaction by assuming electron
energy transfer between neighboring atoms as an exponential function of its effective distance. In our
model, the electron was initially localized at the first site of the chain and we also added pumping of an
acoustic wave at the zeroth site. We solved numerically the dynamic equations for the electron and
lattice performing calculations for the spreading of an electronic wave-packet. We report numerical
evidences with regard to the sub-diffusive transport.
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1. Introduction

In the end of 1950s P.W. Anderson and co-workers demon-
strated that extended eigenstates are completely absent in low-
dimensional systems with uncorrelated disorder [1–7]. One of its
consequences result in the saturation of the width of an initially
localized wave-packet at a finite region around the initial position
in the long time limit. Some years ago, it was demonstrated that
the competition between nonlinearity and disorder plays an
interesting role within the electronic transport [8–36]. By using a
wide range of techniques, authors had shown that, even in the
presence of disorder, nonlinearity can promote the appearance of a
counter-intuitive electronic transport. From an experimental point
of view, within the context of coupled waveguides patterned on an
AlGaAs substrate, the presence of nonlinearity enhances the
localization of linear modes whereas it induces the delocalization
of nonlinear modes [13]. It is also interesting to emphasize the
results of M.G. Velarde and co-workers [22–33] on the possibility
of electronic transport mediated by a new type of electron–
soliton pair.

Within the context of electron transport mediated by non-
linearity or electron–phonon interaction, the problem involving
surface acoustic wave (SAW) has attracted an intense interest. In
a).
general lines, SAW has been used to control electronic dynamics in
nano-devices. One of the best observations of electronic transport
induced by SAW was experimentally done in Ref. [37]. The authors
applied a surface acoustic wave through a GaAs–AlGaAs two-
dimensional electron gas. In Ref. [38], an interesting investigation
of the electronic flux mediated by high frequency (SAW) in GaAs–
AlGaAs heterostructures was reported. In a recent excellent
experiment [39], the authors moved a single electron along a wire
to mimic a kind of ping-pong behavior. Moreover, it was pointed
out that “controlled motion” might be used within the framework
of quantum computing for moving a quantum ’bit’ between two far
from places [39]. The experimental setup consisted of trapping a
single electron in a quantum dot and moved this electron around a
channel by using a SAW. The authors obtained up to 60 shots with
good quality. The possibility of using SAW to move electrons and
construct quantum bits has attracted an intense interest [40–43].

We considered the dynamics of an initially localized wave
packet in one-dimensional disordered chain under the effect of
electron–phonon interaction and an acoustic wave's pumping. Our
formalism consists of a quantum mechanics formalism for the
electron transport and a classical harmonic Hamiltonian model for
the lattice vibrations. We also introduce an electron–lattice inter-
action by considering electron energy transfer between neigh-
boring atoms as an exponential function of its effective distance. In
our model we made the electron initially localized at the first site
of the chain and we added the pumping of an acoustic wave at the
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zero site. We solved numerically the dynamic equations for the
electron and lattice performing calculations for the spreading of
the electronic wave-packet. We report numerical evidences of the
sub-diffusive transport.
2. Model and formalism

In our work the formalism consists of two Hamiltonians: the
quantum electronic and lattice vibration dynamics. The electron
Hamiltonian (He) and the lattice Hamiltonian Hlattice are described,
respectively, by

He ¼
XN
m ¼ 1

ϵmf
†
mfmþ

XN
m ¼ 1

τmþ1;mðf †mþ1f mþ f †mfmþ1Þ ð1Þ

and

Hlattice ¼
p2m
2Mm

þ1
4

XN
m ¼ 1

ðxmþ1�xmÞ2þðxm�xm�1Þ2
h i

; ð2Þ

where ϵm represents the on-site disorder distribution uniformly
chosen within the interval ½�W=2;W=2�, τmþ1;m represents the
energy transfer between the nearest sites, Mm represents the
disordered distribution of masses and xm and pm ¼Mm _xm repre-
sents the atomic position and the momentum of the mth site. Mm

is generated by using the following procedure: Mm ¼ eðηmÞ where
ηm are random numbers uniformly distributed within a range
½�W=2;W=2�. Electron–lattice interaction will be constructed by
considering the electronic hopping term as τmþ1;m ¼ �
e½�αðxmþ 1 � xmÞ� where α represents, in units of the lattice spacing,
the electron–phonon term. For small relative displacement we
recover the Su, Schrieffer, Heeger approximation
τmþ1;m � �½1�αðxmþ1�xmÞ�. The time-dependent wave function
ΦðtÞ ¼P

mcmðtÞjm〉 is obtained by numerical solution of the time-
dependent Schrödinger equation. The Wannier amplitudes evolve
in time according to the time-dependent Schrödinger equation as
ðℏ¼ 1Þ

i
dcmðtÞ
dt

¼ ϵmcmðtÞ�e½�αðxmþ 1 �xmÞ�cmþ1ðtÞ�e½�αðxm � xm� 1Þ�cm�1ðtÞ:
ð3Þ

The classical equations governing the lattice vibrations may be
written as

Mm
d2xm
dt2

¼ xmþ1�2xmþxm�1�α e½�αðxmþ 1 � xmÞ�ðcnmþ1ðtÞcmðtÞ
�

þcmþ1ðtÞcnmðtÞÞ�e½�αðxm � xm� 1Þ�ðcnmðtÞcm�1ðtÞ
þcmðtÞcnm�1ðtÞÞg: ð4Þ

We impose the electron initially localized at site m¼1, i.e.
jΦðt ¼ 0Þ〉¼P

mcmðt ¼ 0Þjm〉, where cmðt ¼ 0Þ ¼ δm;1. For t¼0 we
set xmðt ¼ 0Þ ¼ _xmðt ¼ 0Þ ¼ 0 for m within the interval ½1:N�. Fur-
thermore, we consider the pumping of an acoustic wave at the
extreme left side of the chain (i.e. at the site m¼0) given by the
equation

x0 ¼ A0 cos ðωtÞ; ð5Þ
where ω represents the frequency of the acoustic wave. We solve
the set of quantum/classical coupled equations using combined
high-order Taylor expansion and a second order finite-difference
procedure. The former is employed to obtain a numerical solution
of Schrödinger equation (Eq. (3)) via series expansion of the evo-
lution operator UðΔtÞ [44]:

UðΔtÞ ¼ expð� iHeΔtÞ ¼ 1þ
Xno

l ¼ 1

ð� iHeΔtÞl
l!

ð6Þ
where He is the one electron Hamiltonian. The wave function at
time Δt is given by jΦðΔtÞ〉¼ UðΔtÞjΦðt ¼ 0Þ〉. The method can be
used recursively to obtain the wave-function at time t. Classical
equations (Eq. (4)) are solved by using the latter approach on a
discretized time. We write the second time derivative in Eq. (4) as

d2xm
dt2

� xmðtþΔtÞ�2xmðtÞþxmðt�ΔtÞ
ðΔtÞ2

ð7Þ

Applying the previous formula to the classical equation we derive
the following equation which can be solved numerically:

xmðtþΔtÞ � 2xmðtÞ�xmðt�ΔtÞþðΔtÞ2
Mm

xmþ1ðtÞ�2xmðtÞ
�

þxm�1ðtÞ�α½e½�αðxmþ 1ðtÞ�xmðtÞÞ�ðcnmþ1ðtÞcmðtÞ
þcmþ1ðtÞcnmðtÞÞ
�e½�αðxmðtÞ� xm� 1ðtÞÞ�ðcnmðtÞcm�1ðtÞþcmðtÞcnm�1ðtÞÞ�g; ð8Þ

Our calculations are made with stepΔt ¼ 1� 10�3 and the sum of
Eq. (6) is truncated at no¼10. Then we could keep the wave
function norm within the following numerical tolerance: j1�P

m

j cmðtÞj 2 jo10�10 along the entire time interval ðtmax � 3� 104Þ.
After solving the dynamics equations, we computed some typical
quantities which describe electronic transport on this disordered
model, namely, mean position (centroid) and mean square dis-
placement defined as [34–36]

〈mðtÞ〉¼
X
m

ðmÞj cmðtÞj 2 ð9Þ

and

σðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

ðm� 〈mðtÞ〉Þ2 j cmðtÞj 2
r

; ð10Þ

respectively. The centroid for a given time t represents the mean
position of the electron using the center of a self-expanded chain
as the origin. The mean square displacement provides an estimate
of the size of the wave packet at time t.
3. Results and discussion

We considered the electron fully localized at the left side of the
chain (i.e. fcmðt ¼ 0Þ ¼ δm;1g) and the pumping of an acoustic wave
at the site m¼0 i.e. x0 ¼ A0 cos ðωtÞ, where ω represents the fre-
quency of the acoustic wave. We set W¼2 for all calculations
obtained in Figs. 1–3. Due to the presence of a mass disordered
distribution in our model, we adopted pumping at low-
frequencies ω⪡1. High frequencies do not propagate easily
within disordered harmonic chains [45]. In our calculations we
have used the self-expanding chain to minimize border effects;
whenever the probability of finding the electron or the atomic
vibration at the right side of the chain exceeded 10�20, 10 new
sites were added to the right side. Numerical convergence was
ensured by checking the conservation of the norm of the wave
packet at every time step; our results provide j1�P

m j cmðtÞj 2 jo
10�10 for all times considered. In Fig. 1 we show results of several
calculations for ω¼ 0:1;0:2;0:3 and α¼ 0 up to 0.5. For α¼ 0 we
detected clearly that the electron remains localized close to initial
position. We emphasize that in the absence of electron–phonon
coupling ðα¼ 0Þ our present model converged to the standard
one-dimensional Anderson model with diagonal disorder of the
same order of the bandwidth. Therefore, in this case the electronic
behavior is characterized by exponentially localized eigenstates,
thus promoting the saturation of σ and 〈mðtÞ〉 at long time limit.
For α40 we observed that the square root of the mean square
displacement and the mean position increases with time. We also
noticed that σp tζ with ζ ¼ 0:4�0:45 i.e., a sub-diffusive behavior.
The calculations in Fig. 1 suggest a disruption of the Anderson



Fig. 1. The mean position and mean square displacement computed for ω¼ 0:1;0:2;0:3 and α¼ 0 up to 0.5. The amplitude of the pumping was set at A0 ¼ 1. For α40 we can
see that both m(t) and σðtÞ increases along the time. Our calculations suggest that the coupling of the electron with the acoustic mode pumped in the left side of chain
promotes the breakdown of the Anderson localization.
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Fig. 2. j cmðtÞj 2 versus t and m for ω¼ 0:1;0:2 and α¼ 0;0:5.

Fig. 3. The electronic centroid 〈mðtÞ〉 and the spread of the wave packet σ versus time for ω¼ 0:1, α¼ 0:1;0:2 and A0 ¼ 2;3;4.
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Fig. 4. The electronic centroid 〈mðtÞ〉 and the spread of the wave packet σ versus time for ω¼ 0:1, α¼ 0:2, A0 ¼ 1 and W ¼ 3;4;5.
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localization induced by the coupling with acoustic mode pumped
in the left side of chain. It is an interesting result. In general lines,
the injection of the acoustic wave in one of the ends of the chain
associated with the electron–phonon coupling promotes the
electronic propagation even at the presence of strong diagonal
disorder. The acoustic wave seems to “push” the electron through
the disordered chain. In Fig. 2 we plot j cmðtÞj 2 versus t and m for
ω¼ 0:1;0:2 and α¼ 0;0:5. We noticed that for α¼ 0 the wave-
packet remains localized close to the left side of chain. For α¼ 0:5
we observed that the wave-packet spreads along the chain. The
results shown in Fig. 2 are in good agreement with Fig. 1 thus
suggesting that the coupling between the electron and the
acoustic mode developed electronic transport. In Fig. 3 we ana-
lyzed briefly the effect of the pumping amplitude A0 on the elec-
tronic transport. We plotted the electronic position 〈mðtÞ〉 and the
wave-packet width σ versus time for ω¼ 0:1, α¼ 0:1;0:2 and
A0 ¼ 2;3;4. Our calculations suggest a small increment of both
quantities as the pumping amplitude A0 increases. However, in
general lines, the main results seemed to be qualitatively inde-
pendent of the pumping amplitude A0. Therefore the main sum-
mary of results shown in Figs. 1–3 suggests that, within the har-
monic approximation, the coupling between the electron and a
acoustic mode promote electronic dynamics. We emphasize that
in our model we have considered a reasonable amount of disorder
(W¼2, i.e. the same order of the crystalline electronic bandwidth).
We also emphasize that our results shown in the previous figures
point out that even in the presence of intermediate amount of
disorder, the acoustic wave mediates electron wave-packet
dynamics along the chain. So this brings up the question: What
happens at the limit of strong disorder? In Fig. 4 we included
additional calculations for a more intense amount of disorder. We
plotted the electronic position 〈mðtÞ〉 and the wave packet width
for ω¼ 0:1, α¼ 0:2 and W ¼ 3;4;5. We emphasize that this
threshold can be considered a strong disordered limit in one-
dimensional chains (in special W¼5). Our results denote again
that the electron transport is maintained even in this case. We
observed that the diffusion constant in fact decreases as the dis-
order parameter increases. However, both quantities have shown a
subdiffusive behavior similar to those obtained in the previous
calculations.
4. Summary and conclusions

In this work we have considered the dynamics of an initially
localized wave packet in one-dimensional disordered chain under
effect of electron–phonon interaction and the acoustic wave's
pumping. Our formalism consists of describing quantum electronic
dynamics within the disordered chain and lattice vibration by two
distinct Hamiltonians. The electron–lattice interaction was mod-
eled by considering electron energy transfer between neighboring
atoms as an exponential function of its effective distance. In our
mathematical representation we set the electron initially localized
at the first site of the chain and we add the pumping of an acoustic
wave at the zero site. We solved numerically the dynamic equa-
tions for the electron and lattice performing calculations for the
spreading of the electronic wave-packet. Our results point out that
the electron–phonon coupling and the acoustic wave pumping
promotes a breakdown of the Anderson localization. We analyzed
the dependence of latter with the degree of disorder and we found
that at the range of strong disorder, the electronic transport
mediated by the electron–lattice coupling is still present. Our
calculations were done describing the lattice by using a simplified
harmonic theory. In general, nonlinear vibrations also play inter-
esting roles within the context of electronic dynamics mediated by
lattice vibrations. Our calculations demonstrated that, even within
the harmonic approximation, the coupling with an acoustic wave
propagating along the lattice can promote the charge transport.
We hope that those calculations stimulate further studies in the
field of electronic transport mediated by acoustic wave pumping
and electron–phonon coupling.
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