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Abstract

In this paper, we study the 1D Anderson model with long-range correlated on-site energies. This diagonal-correlated disorder is considered in

such a way that the random sequence of site energies 3n has a 1/ka power spectrum, where k is the wave-vector of the modulations on the random

sequence landscape. Using the Runge–Kutta method to solve the time-dependent Schrödinger equation, we compute the participation number and

the Shannon entropy for an initially localized wave packet. We observe that strong correlations can induce ballistic transport associated with the

emergence of low-energy extended states, in agreement with previous works in this model. We further identify an intermediate regime with super-

diffusive spreading of the wave-packet.
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1. Introduction

The time evolution of one-electron wave-packets in low-

dimensional disordered systems is a well known problem with

several connections with transport properties [1,2]. For low-

dimensional systems with uncorrelated disorder, the Anderson

localization theory predicts the absence of extended eigenstates

[3]. This means that the width of the time-dependent wave-

packet saturates in the long-time limit, i.e. the electron

remains localized in a finite region around the initial position.

The presence of short or long-range correlations is a key

mechanism to induce extended states in the 1D Anderson

model [4–9]. In fact, it has been established that short-range

correlated on-site disorder may lead to the appearance of

extended states at special resonance energies [4–6]. However,

these states form a set of null measure of the density of states in
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the thermodynamic limit, which implies in the absence of

mobility edges in such models.

On the other hand, long-range correlations can induce a

metal–insulator transition in 1D systems [7–9]. A strategy to

achieve this is to considered an 1D system with nearest-

neighbor interactions and a long-range correlated on-site

disorder distribution with a power-like spectrum behaving

as kKa. Whenever, the standard deviation of the energy

distribution is equal to the nearest-neighbor hopping, and a!2,

all states remain localized and the Lyapunov exponent is finite

on the entire energy band. For aO2, a phase of extended states

appears at the center of the energy band, giving rise to two

mobility edges. After this finding, models with long-range

correlated on-site disorder distributions have attracted much

attention. Scaling properties of the localization length [10] and

local density of states [11] close to the critical point have been

subjects of recent studies. Moreover, Bloch oscillations in an

1D disordered system with diagonal long-range correlated

disorder was investigated. It was found that this type of

correlated disorder does not destroy the coherence of such

oscillations [12]. More recently, the metal–insulator transition

in the 2D Anderson model with long-range correlations was

characterized by measuring the participation number exponent

from the long-time behavior of the wave-function spacial
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distribution [13]. The theoretical prediction of delocalization

induced by correlated disorder has been confirmed by

experimental works in semiconductor super-lattices [14] and

microwave transmission spectra through a single-mode

waveguide with correlated scatterers [15]. Several works

suggest that an appropriate algorithm for generating random

correlated sequences with desired mobility edges could be used

in the manufacture of filters for electronic or optical signals [8].

Aiming to investigate how the emergence of delocalized

states in 1D long-range correlated systems influences the

electronic transport, we revisit the 1D Anderson Hamiltonian

with long-range correlated on-site energies. We build an

appropriate disordered long-range correlated on-site energy

sequence using the formalism introduced in Refs. [7,9], which

generates a random sequence with power spectrum pro-

portional to 1/ka, where k is the modulation wave-vector on

the random sequence landscape. Solving numerically the 1D

time-dependent Schrödinger equation, we present the dynami-

cal evolution of an initially localized wave packet. We focus

our studies on return probability R(t), Shannon information

entropy S(t), and participation function x(t) of an initially

localized wave packet. We show in detail the time dependent

form of these functions, characterizing their dependence with

the degree of correlation in the disordered potential. Our results

suggest ballistic transport for the electron wave-packet in the

strong correlation regime (aO2), a clean signature of extended

states. A new super-diffusive regime will be reported to take

place at intermediate correlations.
2. Model and formalism

The disordered 1D Anderson model is defined by the one-

electron Hamiltonian

H Z
X
n

3njni hnjC t
X
n

½jni hnC1jC jni hnK1j�; (1)

where the random energies of the sites 3n introduce diagonal

disorder in the Hamiltonian, the hopping energy t is taken to be

unitary, and the sum is taken over all N sites of an open chain.

In order to introduce long-range correlations in the disorder

distribution, the random sequence of site energies obeys the

relation [7,9]

3n Z zða;NÞ
XN=2
kZ1

1

k

� �a=2

cos
2pnk

N
Cfk

� �
; (2)

where {fk} are N/2 independent random phases uniformly

distributed in the interval [0,2p]. This energy sequence is

shifted in order to have h3nZ0i. z(a,N) is used to set the energy

sequence variance D3nZ1 for all system sizes. We shall

consider time evolution of an initially localized wave packet at

site n0. The time-dependent Schrödinger equation for such a

system can be written as [16]

i _cnðtÞZ 3ncnðtÞKcnC1ðtÞKcnK1ðtÞ; (3)

where cn(t) is the wave amplitude on site n at time t, _cnðtÞ
its time derivative, cnðtZ0ÞZdn;n0

� �
stands for the initial
wave-packet, and ZZ1. To analyze the wave propagation, we

solve Eq. (3) using the fourth-order Runge–Kutta method to

obtain the temporal evolution of an initially localized wave-

packet. We analyze the amplitude of the wave function at the

initial site, calculating the so called return probability [1,16],

RðtÞh jcn0
ðtÞj2: (4)

Usually, the electron escaping from its initial position

occurs when the amplitude cn0
ðtÞ vanishes as t evolves.

Conversely, the amplitude remains finite for a localized

wave-packet. However, the return probability does not

completely characterize the dynamical wave-function

evolution. In addition, we rely on two auxiliary measures to

further analyze these properties: the Shannon information

entropy,

SðtÞZK
X
n

jcnðtÞj
2lnjcnðtÞj

2; (5)

and the participation function,

xðtÞZ
1X

n

jcnðtÞj
4
: (6)

Note that S(t) varies from 0, for a wave function confined to

a single site, to ln N, for a wave uniformly extended over the

whole chain. The participation function x(t) varies from 1 to N

on these same limits [16]. These functions give information

about the number of sites that are visited during the time

evolution of the wave-packet over the underlying lattice.
3. Results and discussion

In this section, we show the results obtained for a wave-

packet initially localized at site n0ZN/2, cnðtZ0ÞZdn;n0

� �
, as

described in Section 2. The fourth-order Runge–Kutta method

is used to solve the set of time-dependent Schrödinger coupled

equations, written as Eq. (3) for the site n. Numerical

convergence was ensured by conservation of the norm of the

wave-packet at every time step, i.e.
P

njcnðtÞj
2Z1. All

calculations were averaged over 300 disorder configurations.

In Fig. 1, we show the scaled asymptotic return probability,

R(t/N)N, as a function of the number of sites N for distinct

correlation degrees. For aO2 the return probability vanishes

linearly, R(t/N)f1/N. This is a clean signature of extended

behavior, in agreement with Ref. [7]. For weak correlations,

a!1, the return probability does not vanish in the thermo-

dynamic limit (N/N). This indicates that all eigenstates are

localized in this regime. In the intermediate regime of 1!a!
2, the asymptotic return probability vanishes slower than

linearly. In this regime, the localization lengths are sensitive to

the re-scaling of the local potential required to keep the

potential variance scale invariant, but such scaling is not

sufficient to promote an effective transport over the whole

chain.

Furthermore, we analyze the time dependent Shannon

entropy S(t) and participation number x(t). For the evaluation

of these quantities, we numerically integrate the wave-



Fig. 1. The scaled return probability for long time, R(t/N)N, versus number

of sites N for distinct degrees of correlations (from top to bottom aZ0, 1, 1.2, 2,

3, 4, and 5). The return probability vanishes as 1/N, R(t/N)N roughly a

constant, for aO2. This signs a metal–insulator transition induced by strong

long-range correlations.
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equation until a stationary state is reached even due to

localization over a finite chain segment or after multiple

reflections of the wave packet on the lattice boundaries. In

Fig. 2(a), we show data for the Shannon entropy S(t) versus
Fig. 2. (a) The Shannon information entropy S(t) versus ln t for aZ3 (dashed

line) and aZ0.5 (continuous line) and NZ8000 sites. S(t) evolves as S(t)fln t

in the strong correlated regime aZ3; (b) The asymptotic Shannon information

entropy, S(t/N), versus ln N. It scales with ln N in the strongly correlated

regime, while it remains finite for weak correlations.
ln t using aZ3 (dashed line) and aZ0.1 (continuous line).

Observe that S(t)fln t for aZ3 and it saturates for aZ0.5.

The logarithmic growth of S(t) corroborates the existence of

extended states for aO2, while its saturation reflects the

localization of the wave packet for weak correlations. In

Fig. 2(b), one observes that S(t/N)fln N for aO2; this

indicates that the asymptotic wave-packet is uniformly

distributed over the chain.

In Fig. 3, we show the numerical results for the scaled

participation number x(t)/Ng versus scaled time computed

from chains with distinct lengths and aZ0.5, 1.2, and 3. The

scaling variables used to achieve the data collapse at aZ3

reveal that the participation number is a linearly increasing

function of time x(t)ft, i.e. the wave-packet spreads

ballistically until it reaches the lattice boundaries. Analyzing

data for other values of a (not shown), we conclude that for

any aO2 the electron displays a ballistic dynamics

associated with the emergence of extended eigenstates over

the entire chain. In this regime, the wave-packet spreads

uniformly over the chain. For weak correlations a!1 all

eigenfunctions remain localized in a finite segment and,

therefore, the participation number in the thermodynamic

limit quickly saturates as time evolves and it is size

independent. Prior to the saturation the wave-packet spreads

diffusively with x(t)ft1/2.

A new regime is identified for intermediate values of the

correlation exponent 1!a!2. The data collapse for the

representative value of aZ1.2 is shown in Fig. 3(b). The

non-trivial scaling exponents reveal that the wave-packet

participation number exhibits a super-diffusive spread

x(t)ft2/3 before saturation. A similar scaling behavior of

the participation number was shown to also take place at the

critical point of the power-law bond-disordered Anderson

model [17]. In that case, the super-diffusive spread was

reflecting the power-law tail developed by the wave-packet

in the super-diffusive regime, in agreement with the

predicted behavior of quantum systems with fractal energy

spectra and eigenfunctions [18]. In the present case, a

different mechanism leads to super-diffusion and to the

anomalous participation number scaling. In the regime of

intermediate correlations, the electron eigenstates remain

exponentially localized. Therefore, the wave-packet develops

also exponential tails. To illustrate this feature, in Fig. 4 we

display the average asymptotic wave-packet in this regime

after a long spreading time. Its exponential tail is clearly

seen in the inset. It is only at short distances that the wave-

packet displays a power-law decay, as shown in the

main picture. These two regimes may be represented by

fitting the wave-packet to the form jcnðt/NÞj2feKn=x=n2=3.

The localization length x in this regime is sensitive to the

normalization needed to keep the variance of the potential

size independent. Such scaling is reflected in the slow

divergence of the asymptotic participation number xfN0.2.

At short times, for which the wave-packet width is smaller

than the localization length x, the pre-asymptotic power-law

decay predominates, resulting in a super-diffusive spread.



Fig. 3. (a) Participation number x(t) as a function of time t for aZ0.5. The size

independence reflects the localized nature of the wave-packet. Prior to the saturation,

the participation number grows diffusively; (b) scaled participation number x(t)/N0.2

as a function of scaled time t/N0.3 for aZ1.2. Data collapse implies in a super-

diffusive spread of the wave-packet; (c) scaled participation number x(t)/N as a

function of scaled time t/N for aZ3. Data collapse implies that the participation

number grows ballistically prior to the reflection at the chain boundaries.

Fig. 4. Asymptotic wave-packet jcn(t/N)j2 versus n (nZ0 is the chain center

at which the wave-function is initially localized). Here, we use NZ8000 and

aZ1.2. In this regime of intermediate correlations, the wave-packet develops

exponential tails as shown in the inset. At short distances, it displays a power-

law decay. The solid line is a fit to the form jcnðt/NÞj2feKn=x=n2=3. The

power-law regime predominates at short times giving rise to the super-diffusive

spread of the wave-packet. The exponential tail promotes the saturation of the

asymptotic participation number.
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4. Conclusions

In this work, we studied the 1D Anderson model with

long-range correlations. In order to introduce long-range
correlations, we applied a Fourier method to construct an

on-site energy sequence with spectral density 1/ka. By

solving the time-dependent Schrödinger equation for an

initially localized wave-packet, we determined the return

probability R(t), the Shannon information entropy S(t) and

the participation function x(t). We found three distinct

dynamical regimes as a function of the correlation exponent.

For a!1, the wave-packet remains on a finite segment of

the chain after an initial diffusive spread. In the strongly

correlated regime aO2, the asymptotic return probability

vanishes linearly with 1/N. The participation number grows

ballistically prior to its reflection at the chain boundaries.

The ballistic spreading indicates that the electron transport

is weakly influenced by the underlying disorder in this

strongly correlated regime. Such behavior is consistent with

the recent demonstration of coherent Bloch oscillations of

the wave-packet in the presence of external fields [12]. A

new dynamical regime was reported for intermediate

correlations with 1!a!2. In this case, the participation

number grows super-diffusively and the asymptotic wave-

packet remains non-uniformly distributed over the chain

keeping exponential tails. At short distances, it displays a

slow power-law decay. On the light of these findings, 1D

chains with long-range correlated disorder can be used as a

simple model that allows for a close investigation of the

crossover from diffusive to ballistic transport in low-

dimensional electron systems.
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