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Sensitivity to initial conditions of the wave-packet dynamics in diluted
Anderson chains

S.S. Albuquerque a, F.A.B.F. de Moura a, M.L. Lyra a,∗, E. Lazo b

a Departamento de Física, Universidade Federal de Alagoas, Maceió AL 57072-970, Brazil
b Departamento de Física, Faculdade de Ciencias, Universidade de Tarapacá, Casilla 7-D, Arica, Chile

Received 8 August 2005; accepted 7 March 2006

Available online 20 March 2006

Communicated by R. Wu

Abstract

We study the one-electron wave-packet dynamics in the one-dimensional diluted Anderson model which is composed of two interpenetrating
chains with pure and random on-site potentials, respectively. This model presents extended states at a particular resonance energy. Starting with
one electron fully localized at the site closer to the chain center, we solve the set of coupled motion equations and calculate the time evolution of
the wave-packet width. We report on a long-time memory effect which is reflected by distinct asymptotic dynamics governing the wave-function
spread for electrons initially localized at random or pure sites. This anomalous behavior is discussed under the light of the Bloch character of the
extended resonant state.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The problem involving the spread of one-electron wave-
functions in low-dimensional disordered systems is a well-
known issue with several connections with transport properties
[1–3]. In general lines, the wave-function of an electron moving
in a perfectly periodic potential spreads linearly in time. In the
presence of uncorrelated disorder, the scaling theory predicts
the absence of extended eigenstates [4] in one-dimensional
(1D) systems. Therefore, the width of the time-dependent wave-
function saturates in the long time limit, i.e., the electron wave-
function remains localized in a finite region around the initial
position. The scaling theory prediction of exponential localiza-
tion of all one-electron eigenfunctions in 1D systems can be
violated when special short-range [5] or long-range [6,7] corre-
lations are present in the disorder distribution. The influence of
scale-free disorder in the 3D Anderson transition has also been
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recently addressed [8]. In particular, the presence of dimer-like
correlations on a N -site binary chain produces

√
N extended

states. These states have random phase changes when crossing
the dimer impurities which results in a finite coherence length.
If the energy of the resonant extended state is within the band of
allowed states of the underlying pure chain, the electron wave-
packet experiences a superdiffusive spread [5].

It has been reported that the fractal dimensions D
μ
2 and D

φ
2

associated with the energy spectra and eigenfunctions, respec-
tively, determine the spread of the wave-function [9] for sys-
tems where the shape of wave-packet is preserved. The kth mo-
ments of the wave-function increase as tkγ with γ = D

μ
2 /D

φ
2

and the return probability decrease as t−D
μ
2 . In fact, it was nu-

merically verified that the dynamical behavior of the Anderson
model at the quantum Hall regime is connected with the energy
spectra and eigenfunctions using exactly the above relations
between dynamical exponents and the fractal dimensions [10,
11]. More recently, the metal–insulator transition in the two-
dimensional Anderson model with long-range correlations was
characterized by measuring the participation number exponent
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D
μ
2 from the long-time behavior of the wave-function spacial

distribution [12].
Within the field of electrons in solids with correlated disor-

der, the diluted Anderson chain has attracted a renewed interest
[13–17]. Hilke [13] introduced an Anderson model with diag-
onal disorder diluted by an underlying periodicity. The model
consists of two interpenetrating sublattices, one composed of
random potentials (Anderson lattice) and the other composed
of non-random segments of constant potentials. Due to the
periodicity, special resonance energies appear with vanishing
wave-function amplitudes on the random lattice. The extended
states in the diluted Anderson model are in fact Bloch waves
with infinite coherence length. In Ref. [15], the authors pre-
sented a simple model for alloys of compound semiconductors
by introducing a one-dimensional binary random system where
impurities are placed in one sublattice while host atoms lie on
the other sublattice. The existence of an extended state at the
band center was demonstrated, both analytic and numerically.

The diluted Anderson model was recently extended to in-
clude a general diluting function which defines the on-site en-
ergies within each non-random segment [14]. Using a block
decimation approach, it was demonstrated that this model dis-
plays a set of extended states, the number of which strongly
depends on the length of the diluting segments and the symme-
tries of the diluting function. Recently, accurate estimates of the
set of extended states in general 1D diluted Anderson models
was presented [18]. The authors also showed that such resonant
extended states influence the wave-packet dynamics. Recently,
the diluted Anderson model was extended for a 2D lattice [19].
Using analytical and numerical methods, it was shown that the
2D diluted Anderson model displays a metal–insulator transi-
tion which was compared with recent experimental results in
2D disordered samples [20].

The diluted Anderson model has a quite particular feature
related to the infinite coherence length of their resonant states.
As the extended states do not probe the underlying random-
ness, they provide a distinct framework for electronic transport
in systems with correlated disorder, as compared to models
with dimer-like correlated disorder whose extended state de-
picts random phase changes [5]. In this work we address to this
important question and provide a detailed study of wave-packet
spread by numerically solving the time-dependent Schrödinger
equation for the complete Hamiltonian in a 1D diluted Ander-
son chain. We restrict our analysis to the simplest case where
every Anderson impurity is diluted by a single pure site with
on-site energy equal to ε0. Starting with one electron fully lo-
calized at the site closer to the chain center, we will solve the set
of coupled motion equations and calculate the time-evolution of
the wave-packet spacial distribution. In particular, we will show
that the dynamics of the wave-packet spread is strongly depen-
dent on the initial condition, thus revealing a long-time memory
effect.

2. Model

The standard one-dimensional Anderson model is described
by a tridiagonal Hamiltonian
(1)H =
∑
j

εj |j〉〈j | + t
∑
j

[|j〉〈j + 1| + |j〉〈j − 1|],

where disorder is introduced on the site energies εj which are
uncorrelated random numbers chosen from a previously defined
distribution. In our calculations, we will use energy units such
that the hopping term t = 1 and the random site energies will
be taken uniformly from the interval [−5,5]. Weaker disorder
leads typically to longer localization lengths and consequently
longer transient times prior to the asymptotic dynamical regime.
The diluted Anderson model we are going to consider is con-
structed by introducing a pure site with on-site energy ε0 be-
tween each original pair of neighboring Anderson sites [13].
Another version of the diluted Anderson model considers the
diluting site with on-site energy ε0 = 0 and the random poten-
tial with a tunable average value [15]. The above two versions
are actually equivalent differing only up to a constant shift in
the potential.

To study the wave-packet dynamics, we follow the time evo-
lution of an initially localized electron. The Wannier amplitudes
evolve in time according to the time-dependent Schrödinger
equation as

(2)
iφ̇n(t) = εnφn(t) + (

φn−1(t) + φn+1(t)
)
, n = 1,2, . . . ,N.

We consider a wave packet initially localized at site i0, i.e.,
φi(t = 0) = δi,i0 . A fourth-order Runge–Kutta method is used
to solve the above set of coupled differential equations. We will
be particularly interested in calculate the wave-packet spacial
distribution |φi(t)|2 as well as the square root of the electron
mean-square displacement defined by

(3)σ(t) =
√√√√ N∑

i=1

(
i − 〈

i(t)
〉)2∣∣φi(t)

∣∣2
,

where 〈i(t)〉 = ∑N
i=1 i|φi(t)|2 is the average electron position

at time t . We choose the initial site i0 close to the chain cen-
ter. To minimize end effects, our numerical calculations were
performed in long chains with N ≈ 6 × 104 sites. As a conse-
quence, the wave-function amplitudes at the ends of the chain
(φ1(t) and φN(t)) were always negligible within the finite time
intervals we considered. However, these were much larger than
the initial transient time and, therefore, we could infer about
the asymptotic scaling regime which sets up in the long-time
domain. We choose two distinct kinds of initial conditions:
i0 being an Anderson site (a random site) and i0 being a pure
site of the diluting sublattice.

3. Results and discussion

The numerical integration of Eq. (2) was performed using
the Runge–Kutta algorithm with time step �t = 10−2. An aver-
age of the time history over 100 distinct disorder configurations
was performed. We start our analysis investigating the main
features of a diluted 1D Anderson model with ε0 = 1. The
emergence of extended states for this particular dilution was
analytically and numerically demonstrated in Refs. [13–15,18].
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Fig. 1. The scaled root mean-square displacement of the electron σ(t) versus
times t for the 1D diluted Anderson model with 6 × 104 sites, ε0 = 1. i0 was
chosen to be an Anderson site (dotted line) in and a diluting site (dashed line).
The distinct scaling exponents characterize the strong sensitivity to the initial
condition exhibited by the wave-function spread.

The density of states (DOS) exhibits a pseudo-gap, with an ex-
ponentially decaying tail as approaching E = 1 from below,
which is reminiscent of the true band-gap appearing in a bi-
nary periodic chain. The resonant energy corresponding to the
extended state is located at a DOS singularity and the localiza-
tion length diverges like ξ ∝ 1/(E − Ec) as one approach the
resonance energy [18].

In Fig. 1 we show typical plots of the scaled average electron
displacement σ(t) versus time for a chain with N = 6 × 104

sites. i0 was chosen to be an Anderson site (dotted line) and a
diluting site (dashed line). We can see a clear dependence of
the asymptotic dynamical exponent of the mean electron dis-
placement σ(t) on the initial electron position. For an initial
condition fully localized in a pure site, the mean electron dis-
placement σ(t) displays a diffusive spread [σ(t) ∝ t0.50(5)] in
contrast with the localized spread found when the electron is
initially located at the random sublattice. Actually, our data can-
not rule out the possibility of a very slow logarithmic spread in
this case.

In Fig. 2 we report the time evolution of the root mean-
square electron displacement σ(t) in a chain with N = 6 × 104

sites and ε0 = 0. In this particular case, the density of states has
no pseudo-gap and the localization length exhibits a slower di-
vergence as one approaches the resonance energy on the form
ξ ∝ 1/(E − Ec)

2/3 [13,18]. As in Fig. 1, i0 was chosen to be at
the Anderson sublattice (dotted line) and at the diluting sublat-
tice (dashed line). Notice again a clear dependence of σ(t) on
the kind of initial condition. For an electron initially localized in
a diluting site, the average electron displacement σ(t) displays
now a subdiffusive spread [σ(t) ∝ t0.33(5)] in contrast with the
diffusive dynamics found for ε0 = 1. On the other hand, σ(t)

exhibits localized spread when one starts from an Anderson
site.

The different dynamical regimes observed for the cases of
ε0 = 0 and ε0 = 1 can be related to the distinct divergences
exhibited by the localization length and the behavior of the den-
sity of states close to the resonance energy. ξ ∝ 1/(E − Ec)
Fig. 2. The scaled root mean-square displacement of the electron σ(t) versus
times t for the 1D diluted Anderson model with 6 × 104 sites, ε0 = 0. i0 was
chosen as an Anderson site (dotted line) and a diluted site (dashed line). No-
tice again the sensitivity to the initial condition presented by the wave-function
spread which is reflected by distinct asymptotic scaling behaviors.

Fig. 3. The wave-function components on the random sites
ΛA(E) = (

∑
i=1,3,5,...,N−1 |φi(E)|2) and diluting sites ΛD(E) =

(
∑

i=2,4,6,...,N |φi(E)|2) obtained using exact diagonalization in a chain
with 500 sites, ε0 = 1 and periodic boundary conditions. The vanishing of
ΛA(Ec) reflects the fact that the extended state in this model is fully localized
on the diluting sublattice.

with Ec being a band gap singularity for ε0 = 1 while ξ ∝
1/(E − Ec)

(2/3) with no energy gap at Ec for ε0 = 0. To un-
derstand the origin of the sensitivity to initial conditions of the
electronic wave-function spread, one shall notice that an ini-
tially localized wave-packet has a wide spectral distribution
and, therefore, has contributions coming from many energy
eigenstates. However, an electron wave-packet fully localized at
the random sublattice has no contribution coming from the ex-
tended state, once it has vanishing amplitudes at this sublattice.
In order to better illustrate this feature, we computed the sum
of the components of each wave-function belonging to the ran-
dom sublattice ΛA(E) = (

∑
i=1,3,5,...,N−1 |φi(E)|2) and to the

diluting sublattice ΛD(E) = (
∑

i=2,4,6,...,N |φi(E)|2). A sim-
ilar quantity has been recently used to study the localization
properties of quasiperiodic chains on which the sensitivity of
the wave-packet dynamics to the initial condition was reported
[21]. In Fig. 3 we shown the results for ΛA(E) and ΛD(E)
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Fig. 4. Square of the average wave-function components after a long time
spread (t > 10 000) versus index site i − i0 for two initial conditions and
representative diluting energies. The developed power-law decay prior to the
exponential cutoff is in the origin of the diffusive-like spread. The decay expo-
nents |φj |2 ∝ 1/|i − i0|DΦ in the intermediate regime are, from the bottom to
the top line, DΦ = 4.0(2), 4.0(2), 2.0(1) and 1.25(1).

obtained from exact diagonalization of the Hamiltonian in a
chain with 500 sites, periodic boundary conditions and ε0 = 1.
These plots clearly show that the extended state in this model is
fully localized on the diluting sublattice, i.e., ΛA(Ec) = 0. Fur-
ther, as one approach the resonance energy, the states have lin-
early vanishing amplitudes at the Anderson sublattice. There-
fore, when starting with a wave-packet fully on the Anderson
sublattice, there is a very small contribution coming from the
effectively extended states, thus resulting in a slower wave-
function spread. It is worth to mention that the energy spread
on disordered harmonic chains also shows a sensitivity to ini-
tial conditions whose origin is related to the different forms
the effectively extended modes contribute to the spectral de-
composition of impulse and displacement excitations [22]. To
complete the above picture, we plot in Fig. 4 the wave-function
components |φi |2, after a long-time evolution (t > 10 000) and
averaged over 100 histories with distinct disorder realizations,
versus site index i − i0 for both initial conditions and two repre-
sentative values of ε0. In any case, the wave-function develops
a power-law decay which is followed by an exponential tail due
to the finite spreading time used. The power-law decay expo-
nents are distinct when different initial conditions and diluting
on-site energies are considered, thus supporting the sensitivity
to initial condition of the asymptotic wave-packet dynamics.

4. Summary and conclusions

In summary, we investigated the 1D diluted Anderson model
where every Anderson impurity is diluted by a single site with
on-site energy ε0. We start with one electron fully localized at
the site closer to the chain center and solved the set of coupled
motion equations to calculate the root mean-square displace-
ment of the electron. Due to the presence of extended states,
this model does not display the usual localization of the wave-
packet in one-dimensional disordered systems. We obtain an
unexpected dependence of wave-packet time-evolution with the
electron initial position. Starting with one electron fully lo-
calized at a diluting site, this system presents a faster wave-
function spread than that exhibited by an electron initially local-
ized at a random site. In fact, the extended states of this model
are fully localized at diluting sites. Therefore, a wave-packet
fully localized on the Anderson sublattice has a small contribu-
tion coming from spectral components with large localization
lengths and, as such, the wave-function spread results slower. In
addition, we showed numerically that the time-dependent wave
function develops a spacial distribution with a power-law tail.
The characteristic scaling exponent of the wave-function distri-
bution is different for distinct initial conditions, thus supporting
the sensitivity to initial conditions of the asymptotic time evolu-
tion. Semiconductor superlattices with impurities located at al-
ternating layers could be used as an experimental ground to ob-
serve this effect once the electronic transport properties would
be sensitive to the nature of the carriers injection layer. How-
ever, incoherent scattering on the impurities and the need of
single layer excitement may difficult such experimental realiza-
tion. Although the carrier scattering by impurities may limit the
experimental observation to thin superstructures, which would
bring to the analysis finite-size effects, the single layer excite-
ment can be optically realizable by pumping the superlattice
with a focused laser.
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