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Abstract

We study the nature of the electronic states in tight-binding one-dimensional models with
long-range correlated disorder. In particular, we study both diagonal and o�-diagonal chains. The
energies are considered to be in such a sequency to describe the trace of a fractional Brownian
motion with a speci�ed spectral density S(k)˙ 1=k�. Using a renormalization group technique,
we show that for random on-site energy sequences with anti-persistent increments (�¡ 2) all
energy eigenstates are exponentially localized. On the other hand, for on-site energy sequences
with persistent increments (�¿ 2), the Lyapunov coe�cient (inverse localization length) vanishes
within a �nite range of energy values revealing the presence of an Anderson-like metal–insulator
transition. In the case of o�-diagonal disorder a phase of delocalized states becomes stable for
any �¿ 1. c© 1999 Elsevier Science B.V. All rights reserved.
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In the recent years, a series of one-dimensional versions of the Anderson model
has been shown to exhibit a breakdown of Anderson’s localization induced by in-
ternal correlations on the disorder distribution [1–5]. Most of these models consider
on-site energies �n distributed in such a way that the impurity always appears in �nite
segments of �xed size. Extended states arise from resonant modes which present no
backscattering through these �nite structures. Such states form a discrete set of energy
values. Therefore, these models do not present a true disorder induced metal–insulator
transition in the thermodynamic limit which is characterized by the presence of mo-
bility edges separating extended and localized energy eigenstates. Also, chains with
correlated o�-diagonal interactions [1,3,4] have been reported to display delocalized
states.
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Within this context, a natural question to be made is about the possible e�ects
due to long-range correlations in the disorder distribution. Several stochastic processes
in nature are known to generate long-range correlated random sequences which have
no characteristic scale [6,7]. These sequences usually have an approximate power-law
spectral density of the form S(k) ˙ 1=k�, where k is related to the wavelength � of
the undulations on the random parameter landscape by k=1=�. In a recent work, Russ
et al. [8] have shown that the states near the center of the bond are strongly sensitive
to long-range correlations in the disordered potential.
In this work, we further investigate the nature of one-electron states of the 1D

Anderson model with long-range correlated disorder characterized by a power-law spec-
tral density. The energy landscape is derived from the trace of a fractional Brownian
motion. By using a renormalization group method, we show that all one-electron states
remain localized for �¡ 2, but there is a �nite range of energy values with extended
eigenstates for �¿ 2 even in the thermodynamic limit.
At �rst, we consider a Hamiltonian model describing one electron moving in a chain

with a single orbital per site and nearest-neighbor interactions. In the atomic orbital
wave function basis {|n〉} the Hamiltonian is expressed as

H =
∑
n

�n|n〉〈n|+ t
∑
n

[|n〉〈n+ 1|+ |n〉〈n− 1|] ; (1)

where �n is the energy at site n and t is the �rst-neighbor hopping amplitude. Hereafter
we will use energy units of t=1. In the standard Anderson model the site energies are
considered to assume random values uncorrelated from site to site exhibiting, therefore,
a white noise spectrum S(k)˙ k0.
In order to introduce long-range correlations in the disorder distribution, the site-

energies �n are derived from the trace of a fractional Brownian motion with a speci�ed
spectral density S(k) ˙ 1=k�. For � = 0 one recovers the traditional Anderson model
with �-correlated disorder 〈�n�n′〉 = 〈�2n〉�n;n′ . In the case of � = 2 the sequency of
site energies resembles the trace of the usual Brownian motion. The exponent � is
directly related to the Hurst exponent H of the rescaled range analysis (� = 2H + 1)
which describes the self-similar character of the series and the persistent character of
its increments. To generate the trace of a fractional Brownian motion, we followed an
approach based on the use of discrete Fourier transforms [9–12]. A power-law spectral
density is imposed by construction when one chooses the on-site energies to be given
by the relation

�i =
N=2∑
k=1

[
k−�

(
2�
N

)(1−�)]1=2
cos

(
2�ik
N

+ �k

)
; (2)

where N is the number of sites and �k are N=2 random phases uniformly distributed
in the interval [0; 2�]. In what follows we will normalize the energy sequence to have
〈�n〉= 0 and 〈�2n〉= 1.
To study the properties of the one-electron states of the above model, we applied the

general renormalization technique to the one-dimensional nearest-neighbor tight-binding
model. The method is based on the particular form assumed by the equation of motion
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satis�ed by the Green’s operator matrix elements [G(z)]mn = 〈m|1=(z−H)|n〉 [13,14]:

(z − �0n+�)[G(z)]n+�; n = ��; 0 + tn+�; n+�−1[G(z)]n+�−1; m;
+tn+�; n+�+1[G(z)]n+�+1; n; (3)

where �0i = �i; t
0
i; i+1 = t and � = 0;±1;±2; : : : .

After eliminating the elements associated with a given site, the remaining set of
equations of motion can be expressed in the same form as the original one but with
site energies and hopping amplitude renormalized. The operation of renormalization
consists in removing iteratively the sites 1; 2; 3; : : : ; N of the lattice, obtaining the e�ec-
tive energies of the extremal sites and the e�ective hopping interaction between them
through the following three iterative equations:

�(N+1)0 (E) = �(N )0 (E) + t(e� )0N
1

E − �(N−1)N (E)
t(e� )0N ; (4)

�(N )N+1(E) = �N+1 + t
1

E − �(N−1)N (E)
t ; (5)

t(e� )0; N+1(E) = t
(e� )
0N (E)

1

E − �(N−1)N (E)
t ; (6)

where �(N )0 (�(N )N+1) is the e�ective energy at site 0 (N + 1) after the dizimation of the
N internal sites and t(e� )0; N+1 is the e�ective hopping between sites 0 and N + 1.
We investigate the nature of the electronic states by computing the Lyapunov coe�-

cient  (inverse localization length). Farchioni et al. [14] have shown that, after a large
number of iterations,  is asymptotically related to the e�ective hopping amplitude as

(E) = lim
N→∞

[
1
N
ln
∣∣∣∣GN; N (E)G0; N (E)

∣∣∣∣
]
=− lim

N→∞
1
N
ln |t(e� )0; N (E)| : (7)

Therefore, a linear regression of ln|t(e� )0; N (E)| versus N allows for a direct extrapolation
of the Lyapunov coe�cient in the thermodynamic limit after a �nite, although large,
number of iterations. The e�ective interaction t(e� )0N (E) presents an oscillating behavior
in the case of extended states (which implies in a vanishing ) and an exponentially
decreasing behavior for exponentially localized states (�nite ).
We computed (E) within the band of allowed energies for distinct values of the

exponent �. In Fig. 1 we show plots of  versus E for two typical values of � corre-
sponding to an anti-persistent (�=1:0) and a persistent (�=2:5) sequency as obtained
from chains with N = 104 sites. Data from larger chains produce curves indistin-
guishable to the eyes and, therefore, the observed trends shall remain even in the
thermodynamical limit. For random sequences with anti-persistent increments, we ob-
tained that the Lyapunov coe�cient is �nite within the entire band of allowed energies
indicating that all electronic eigenstates remain exponentially localized, with the local-
ization being more pronounced near the band edges, as usual. However, this picture is
qualitatively di�erent for potentials with persistent increments (�¿ 2). The Lyapunov
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Fig. 1. Lyapunov coe�cient  versus E as obtained from the renormalization procedure on chains with
random on-site energies, N =104 sites and �=1:0 (on-site energy landscape with anti-persistent increments)
and �=2:5 (on-site energy landscape with persistent increments). The vanishing of the Lyapunov coe�cient
within a �nite range of energy values for � = 2:5 indicates the presence of a phase of extended states near
the center of the band. Data from larger chains produce curves indistinguishable to the eyes.

Fig. 2. The e�ective interaction |t(e� )0; N (E)| versus the number of iterations N for a sequency with originally

104 sites and E =−0:5. (a) � = 1:0 for which the one-electron states are localized (exponentially decaying
e�ective interaction); (b) � = 2:5 showing the oscillatory behavior typical of extended states.

coe�cient vanishes within a �nite range of energy values revealing the presence of
a phase of extended states near the center of the band. For � = 2:0 the Lyapunov
coe�cient vanishes in a single energy as  ˙ |E − Ec|� with � = 2:0. The range of
energies corresponding to extended states increases with �, with the Lyapunov coe�-
cient vanishing linearly near Ec for large values of �. In Fig. 2 we show the e�ective
interaction |t(e� )0; N (E)| versus N to exemplify the exponential decaying character of the
e�ective interaction for localized states in contrast to its oscillating behavior in the case
of extended states.
We further investigate the random hopping version of the present model whose

Hamiltonian is given by

H =
∑
n

�|n〉〈n|+
∑
n

tn[|n〉〈n+ 1|+ |n+ 1〉〈n|] ; (8)
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Fig. 3. Lyapunov coe�cient  versus E as obtained from the renormalization procedure on chains with
random hopping amplitudes, N = 104 sites and � = 0:0 and � = 1:5. The results are similar to the random
diagonal case with a delocalized phase emerging for �¿ 1. The vanishing of  at the center of the band
for �¡ 1 is associated with the presence of a quasi-delocalized state with a stretched exponential envelope
[15].

where tn are assumed to have the same Fourier decomposition as in Eq. (2). For the
sake of simplicity, we will assume � = 0 without any loss of generality. In order to
avoid a vanishing hopping amplitude we normalize the hopping to have 〈tn〉 = 4 and
�tn=

√〈t2n〉 − 〈tn〉2 = 1. The Lyapunov coe�cient for distinct values of � is shown in
Fig. 3. It depicts a phase of delocalized states near the center of the band for �¿ 1.
The vanishing of  at the center of the band for �¡ 1 is associated with the presence
of a quasi-delocalized state with a stretched exponential envelope [15].
In summary, we found that the one-dimensional Anderson model with long-range

correlated diagonal displays a phase of extended electronic states once the disorder
distribution exhibits a spectral density S(k) ˙ 1=k� with �¿ 2, i.e., whenever the
energy sequency increments have a long-range persistent character. In the case of
o�-diagonal disorder a phase of extended states becomes stable for �¿ 1. Contrary
to dimer-like models where delocalization is observed only at particular resonance
energies, these models exhibit a true Anderson transition with mobility edges separating
localized and thermodynamically extended states.

This work was partially supported by CNPq, CAPES and FINEP (Brazilian agen-
cies). The research work of FABFM is supported by a studentship from CNPq.

References

[1] J.C. Flores, J. Phys.: Condens. Matter. 1 (1989) 8471.
[2] D.H. Dunlap, H.L. Wu, P. Phillips, Phys. Rev. Lett. 65 (1990) 88.
[3] A. Bovier, J. Phys. A 25 (1992) 1021.
[4] M. Hilke, J. Phys. A 27 (1994) 4773.
[5] J. Heinrichs, Phys. Rev. B 51 (1995) 5699.
[6] M. Paczuski, S. Maslov, P. Bak, Phys. Rev. E 53 (1996) 414, and references therein.
[7] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59 (1987) 381.
[8] S. Russ, S. Havlin, I. Webman, Phyl. Mag. B 77 (1998) 1449.



470 F.A.B.F. de Moura, M.L. Lyra / Physica A 266 (1999) 465–470

[9] J. Feder, Fractals, Plenum Press, New York, 1988.
[10] A. Tsonis, Chaos: From Theory to Applications, Plenum Press, New York, 1992.
[11] A.R. Osborne, A. Provenzale, Physica D 35 (1989) 357.
[12] N.P. Greis, H.S. Greenside, Phys. Rev. A 44 (1991) 2324.
[13] K.A. Chao, R. Riklund, You-Yan Liu, Phys. Rev. B 32 (1985) 5979.
[14] R. Farchioni et al., Phys. Rev. B 45 (1992) 6383.
[15] C.M. Soukoulis, E.N. Economou, Phys. Rev. B 24 (1981) 5698.


