Atomic decay in a coupled-cavity system with Gaussian-correlated hopping
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Abstract

We investigate the dynamics of a two-level atom weakly interacting with a one-dimensional chain of coupled cavities with spatially-
correlated hopping disorder. The correlations are introduced via a Gaussian kernel and enable the emergence of quasi-extended
modes despite the presence of fluctuations. By tracking the time evolution of the excitation, we observe a crossover between
Markovian to non-Markovian decay regimes. For larger correlation lengths, the Markovian dynamics is pronounced when the
atomic frequency meets a well defined region around the center of the photonic band, indicating the presence of the delocalized
modes. Our results highlight the role of correlated structural disorder in controlling the dynamics of open quantum systems as well

as probing transport properties of low-dimensional systems.

1. Introduction

In the process of spontaneous emission of a two-level atom,
the dynamics the emitted energy depends on the geometry of
the surroundings [1}2]. In open space, the excitation decays ex-
ponentially and never returns to the atom, due to the flat profile
of the associated spectral density. In contrast, when the spec-
tral density is characterized by a narrow spectral lineshape (e.g.
a high-Q cavity) the atom can reabsorb and emit the photon
multiple times, a phenomenon known as vacuum Rabi oscilla-
tions. In terms of information backflow and non-Markovianity
[3], these two events lie at opposite ends, the former being clas-
sified as a Markovian (memoryless) amplitude damping pro-
cess. Non-Markovian dynamics is therefore expected when the
atom is coupled to structured environments possessing nontriv-
ial spectral densities, a scenario explored in various contexts
[2 14, 15016, 17, 18 190 (100 (11, 112} [13L 141 (1501164 17, [18L 191 120, 21]].
In this respect, photonic crystals offer a rich platform to study
and manipulate light-matter interactions, and have indeed seen
significant experimental progress [22, 23} 24} 25, 126} 27]].

Structured (or colored) environments can be engineered from
simple geometries such as 1D tight-binding models [28| 29
L1} 112} 14} 20, 21]] and still allow for involved dynamics. In
Ref. [L1], Lorenzo et al. considered a single two-level emit-
ter locally coupled to an array of cavities with evanescent field
modes. In the presence of on-site Anderson disorder, they
showed that the onset of localized single-photon modes led to
a non-Markovian regime of atomic emission; in contrast to the
Markovian behavior supported by the effectively flat spectral
density around the center of the band. Monteiro et al. [20] ex-
tended this idea by considering a long-range correlated disor-
der model known to support a localization-delocalization tran-
sition [30]. The degree of non-Markovianity could be judis-
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ciously controlled by the correlation parameter. In another re-
cent work [21], a coupled-cavity array featuring short-range
correlated defects was considered, revealing a crossover from
non-Markovian to Markovian regimes at specific resonances.

Inspired by the prospect of performing cavity QED in dis-
ordered lattices [22], some of the findings above highlight the
role of anomalous transport in low-dimensional systems with
correlated disorder [31]], where standard Anderson localization
breaks down. These models are promissing for designing pho-
tonic lattices to control the emission process. Conversely, the
emitter dynamics can be used probe the transport properties of
the environment, allowing for, e.g., spectral density learning
and classification [32} [33].

In previous works [11} 1220} 21]] the influence of on-site dis-
order in a coupled-cavity array, encoded in the cavity frenquen-
cies, was considered. This time, we address the role of hop-
ping (off-diagonal) disorder displaying Gaussian correlations
[34]], where spatial correlations decay smoothly with distance.
The environment now enjoys chiral symmetry and, unlike the
standard Anderson model with diagonal disorder, off-diagonal
disorder can lead to critical behavior at zero energy [31]. All
eigenstates remain localized in one dimension, but the wave-
functions display power-law decay, instead of exponential de-
cay, near the band center. Our goal is to investigate how this
affects the atomic emission process. We observe a crossover
from non-Markovian to Markovian decay around the center of
the band for larger correlation lengths, thereby confirming the
presence of nearly delocalized environment modes.

2. Model

2.1. General

Let us consider a single two-level atom weakly coupled to the
field mode supported by a high-Q cavity. The resulting Jaynes-
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Cummings interaction is written as (h = 1)

H) = 0,616~ +y(G1ag + 5-a)), 1)
where ay, &g are the bosonic operators acting on the cavity
mode, o, o_ are the atomic ladder operators, w, is the cor-
responding transition frequency between ground and excited
states, {|g),le)}, and y denotes the interaction strength. Such
a model is paradigmatic in quantum optics and has been exten-
sively used to describe light—matter interactions in cavity QED.
If the atom is initialized in the excited state with the cavity in
the vacuum, Rabi oscillations take place at a frequency given
by 7.

Viewing the cavity mode as a quantum reservoir, we realize
that the atomic decay problem (an amplitude damping channel)
is rather trivial and distinguished by periodic memory revivals.
This scenario can thus be regarded as fully non-Markovian
[2L [11]]. A natural extension is to consider the atom interact-
ing with many bosonic modes &y, with associated frequencies
E}, described by the so-called spin-boson Hamiltonian [35]]

H= w6+ Z Endrlay + Z V(G +0-0)).  (2)
k k

Considering the joint atom-environment initial state [(0)) =
le) [vac), its unitary time-evolution yields |y(#)) = e ™ [y(0)) =
f.(®) ey [vac) + X fi(®) 1g) lax), where |ay) = &Z [vac) denotes a
single-photon occupying field mode k and f,(¢), fi(f) are time-
dependent coefficients. Straightforward manipulations lead to
the equation for f,(7) [1L1]:

10 = =wafi = [ Y g SOt
k

where we identify the spectral density of the reservoir as
G(E) = Y [vil*6(E — Ey), which fully characterizes it. In gen-
eral, compared to Eq. (I)), the atomic excitation spreads into the
modes in a more complicated manner. The standard Markovian
regime of emission, characterized by exponential decay, is ob-
tained when G(E) is constant (or at least varies smoothly over
an appreciable range of frequencies). In this case the atom sees
a flat, unstructured environment.

2.2. Disordered coupled-cavity array

We now provide a structure to the environment by assuming
that the cavity described by Eq. (I)) is part of an array of coupled
(empty) N + 1 cavities featuring a 1D tight-binding description
given by

N/2 N/2-1
A= Y @fai+ Y Ji(ajam +al,a), @)
i=—N/2 i=—N/2

where J; is the hopping strength expressed in units of J = 1.
The full Hamiltonian thus reads H = H; + FIenv and describes
the two-level atom locally coupled to the array via the central
cavity (i = 0). The connection to Eq. (@) is established from
Heny laie) = Eg lax) and i = y{vacldolay).

In this work, we assume that the cavity frequencies are as-
sumed to be uniform and set to zero for simplicity ¢ = 0.

On the other hand, the cavity-cavity couplings J; are gener-
ated from a Gaussian-correlated random sequence, defined as
Ji = Y nme ™/ where L is the correlation length and
{n.} are uncorrelated random variables assigned from a normal
distribution. This construction yields a spatially-correlated set
of couplings obeying

s .2
() ) 5)

Jidj)y ~ exp(— i

To ensure a positive mean and a controlled width of the hop-
ping distribution, while preserving the imposed correlations,
we apply the nonlinear transformation J; — 0.5 X tanh(J;) + 1.
Physically, it is important that the coupling amplitudes retain
a fixed sign (all positive, in this case). Allowing both positive
and negative values would correspond to random m-phase shifts
between neighboring sites, which would change the symmetry
class of the system and mix the effects of amplitude disorder
with those of sign (or phase) disorder. By enforcing a single
sign for J;, we isolate the role of amplitude fluctuations while
keeping the overall topology and phase structure of the homo-
geneous array unchanged.

We assume the weak-coupling regime y < 1, such that
the atomic dynamics is influenced by the detunings w, — Ej.
In a fully ordered system, this regime entails Markovian dy-
namics in the center of the band, with the exponential de-
cay of the atomic population r(r) = | ()P = ¢ [29].
This can be readily verified for vy = 0.1J, which we will
fix throughout. The flatness of G(E) in this case follows
from the atom being strongly detuned from the band edges
and, most importantly, from the field modes being described
by Bloch wavefuncions. In contrast, if the environment is
made up by localized wavefunctions, it may trigger resonant
cavity-QED dynamics [22| [11]. These results reveal an in-
teresting relationship between delocalization/localization and
Markovianity/non-Markovianity [11]], which we explore in the
following section for the correlated off-diagonal disorder model
introduced above.

3. Results

The time-evolved state |y/(7)) = f,(t)|e) [vac)+ Y, fi(®) 1g) [1,),
with |1;) = &; [vac) representing a photon occupying the lo-
cal mode (cavity) i, is obtained by numerically integrating
the Schrodinger equation using the fourth-order Runge-Kutta
method. For computing larger array sizes N, we use a self-
expanding chain technique. Instead of initializing the full array,
we begin with a reduced segment centered around the emitter,
covering about 100 cavities each side. During the time evo-
lution, the wavefunction amplitude |f;(¢)| at the edges of the
self-expanding array is monitored, with the domain being dy-
namically expanded whenever non-negligible amplitudes are
detected. Array sizes up to N = 8000 are considered, for max-
imum times tJ ~ 2000, ensuring no boundary effects. This
adaptive approach ensures numerical precision while avoiding
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Figure 1: Time-averaged occupation probability of the array, (S), with foJ ~

1500, as a function of the atomic frequency w, for different values of L. Each
curve is averaged over 10° realizations of the disorder.

unnecessary computations, and is especially efficient for sim-
ulating photon dynamics in onedimensional lattices. We use a
time step of At ~ 0.008/J, which provides reasonable accu-
racy and low computational cost, while keeping the norm of the
wavefunction close to 1, with deviations on the order of 10719,

First, let us discuss the environment occupation probability,
defined as S(r) = ;| ﬁ(t)lz, which characterizes the capabil-
ity of the atom to release energy to the environment. We want
to evaluate its long-time behavior by (S) = NLT Doty S (En)s
where the sum runs over times #, beyond a transient threshold
to = 1500/J, and N7 is the number of points covered. This av-
eraged quantity provides a robust indicator of the localization
properties of the coupled-cavity array, with (S) — 1 indicating
delocalization of the field modes in close resonance with the
emitter’s frequency w,.

Results are shown in Fig. [I] for distinct values of the corre-
lation parameter L. We note that (S) responds more sharply
to L up to w, = 1J, suggesting that the correlation length
favors states with large localization lengths around the cen-
ter of the band, despite the array being disordered. Note that
(§) — 0 does not necessarily imply the presence of local-
ized field modes. Rather, it expresses that the atomic frequency
reached a photonic bandgap and therefore cannot release its en-
ergy. Other outcomes of (S) indicate partial trapping of the
atomic excitation, manifested due to an active atom-field en-
ergy exchange. We mention that atomic population trapping,
accompanied by partial field localization, can occur even in the
absence of disorder as a consequence of the formation of atom-
photon bound states 28, 29].

To improve the analysis over the localization properties of the
environment we compute eigenstate participation ratio defined

as
1

SN KLl

This quantity provides an estimate of the number of sites ef-
fectively occupied by the eigenstate, which ranges from 1 to
N, corresponding fully localized and delocalized states, respec-
tively. In Figs. [Jfa—c) we present the quantity In(¢/N) as a
function of In(N) for different values of the correlation length
L at selected frequencies E. For L = 1, all curves decay with
N, indicating that £ remains approximately constant as N in-
creases. This is the expected behavior for localized states with
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Figure 2: Participation ratio ¢ = £(E) evaluated at selected frequencies E of
the bosonic environment. The plots show In(¢/N) versus In(N) for correlation
lengths (a) L = 1, (b) L = 5, and (c¢) L = 10. Results reveal a crossover from
localized states (L = 1) to states with large localization lengths for L > 1 at low
frequencies.

a finite localization length. In contrast, for L > 1 and E < 1,
the rescaled participation &£/N is approximately constant with
increasing N, as evidenced by the slope = 0. This behavior
indicates that the corresponding eigenstates exhibit, within the
range of system sizes N considered here, a localization length
~ N. For higher frequencies, £/N always decreases with N
even for large correlation lengths L. Hence, the eigenstates re-
main localized. In summary, the eigenstates near the center of
the frequency spectrum possess large localization lengths due
to the presence of correlated disorder. An emitter weakly cou-



1.0
0.8

0.6

0.4‘ el =1
e L =5
" L=10
0.2r A L=20
L=30
v L =40
00l . he¥ed
-4 =2 2 4

0
Wa/J

Figure 3: Non-Markovianity measure AV as a function of the atomic frequency
w, for many values of L. Each curve is averaged over an ensemble of 103
realizations of the disorder.

pled to the environment will thus hybridize mostly with those
eigenstates whose frequencies are close to w,.

The next step is to compute the degree of non-Markovianity
of the emission process across the range of frequencies. Nu-
merous quantifiers for non-Markovianity exist in the literature
(36, 37, 31, [38], 39}, each suited to different physical scenarios.
In our case, the system undergoes a pure amplitude damping
process [111, 20], with well-defined limits: exponential decay
corresponds to the Markovian regime, while full Rabi oscilla-
tions indicate extreme non-Markovianity. A suitable measure
should capture the information backflow to the atom during the
dynamics. We adopt a criterion based on the volume of accessi-
ble states [37], represented here by the squared return probabil-
ity 72(¢). For an amplitude damping channel it suffices to track
the positive slopes of d;r(¢) using the formula [11]]:

dr,
j; || at

(>0 At

dy,
— ()| dt
fa,r(t)<0 dt ]

where the denominator ensures that N ranges from 0 (Marko-
vian dynamics) to 1 (maximum non-Markovianity).

Figure[3]illustrates the dependence of N against w, for differ-
ent values of the correlation length L. For very short L (L = 1),
N displays a dip at w, = 0. This is related to the known
anomaly in the localization length of the zero-energy modes
in the presence of off-diagonal disorder [31]]. As L increases, a
clear Markovian regime spans from about w = —J through J,
with outcomes N < 1078, Some degree of non-Markovianity is
observed beyond that frequency range, with N increasing with
w, — due to the influence of localized modes — eventually sat-
urating with L. Note that the highest values of N occur for
lw,| 2 3J, that is, when the atomic frequency crosses the band
edge.

To help with the interpretation of the results, in Fig. @ we plot
the spectral density function G(E) of the coupled cavity array,
for selected values of L, obtained by exact numerical diagonal-
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Figure 4: Spectral density G(E) = Y. lyx|?6(E — Ey) of the coupled-cavity array
for selected values of L. Results are obtained via exact numerical diagonaliza-
tion of the free-field Hamiltonian, Eq. @), with N = 1000. A single (typical)

disorder realization is employed for L = 1,5, whereas an ensemble of size 103
is used for L = 20.

ization of I-AIenV [Eq. (EI)]. For L = 1 and L = 5, only a sin-
gle disorder sample is considered, so as to highlight the effect
of the correlation length. The first shows an irregular, peaked
profile across the band, but with weaker fluctuations near the
band center, which explains the corresponding results for N
[Fig. [B]l. Now, remarkably, even with the slightest increase to
L =5, G(E) becomes a smooth function over the region that
corresponds to strong Markovianity. When the atom is weakly
coupled to the environment, it effectively senses a flat G(E).
One example of G(E) averaged over many disorder realizations
is shown in the last panel of Fig. ] for L = 20. Therein, we
see that two well-defined peaks appear at E ~ +J. These peaks
bridge the crossover between Markovian and non-Markovian
emission regimes and surround environment modes possessing
large localization lengths.

We remark that the type of correlated disorder considered in
the present work, occurring in the hopping amplitudes, differs
substantially from the more commonly studied case of corre-
lated diagonal (on-site) disorder [20, 21]]. Hopping disorder is
characterized by a significantly larger localization length near
the center of the band. This is why the obtained crossover be-
tween both emission regimes is so pronounced at definite res-
onant energies (see Fig. E[) We also examined (now shown)
the same model but with Gaussian-correlated diagonal disor-
der. The behavior of the participation ratio ¢ indicated much
shorter localization lengths for the same set of parameters L
and E. Appreciable Markovian dynamics would only appear in
the immediate vicinity of £ = 0 for very large L, which is a less
interesting result.



Finally, let us comment on the relationship between non-
Markovianity and the characteristic localization length of the
resonant frequency by making an analogy with cavity-QED
phenomena. Given the weak-coupling condition for vy, let us
consider the approximation in which the atom strongly inter-
acts with one of the modes, say a,, while the others effectively
behave as a Markovian environment. A Lindblad master equa-
tion can then be written as (see details in Ref. [11]):

oA UL P
o = —i[H, p] +F(LpL‘ - = {LTL,p}), 8)

[\

where p is the reduced state of the atom plus mode ¢. The dis-
sipative modes act on the main partition via the jump operator
I = &_ associated with the rate I' = Y pee VilPO(Ex — wy).
Here, the atom coherently interacts with a dressed field mode,
instead of a local cavity mode via [cf. Eq. (I)]

Ay = 0,06 + Ecd} @ + ye(F+a; +h.c). 9)

The master equation above accounts for a dissipative Jaynes-
Cummings model. The most important factor in governing the
damped Rabi dynamics is the ratio I'/y,. The larger it is, the
closer the emission is to the Markovian regime.

To connect this effective model to the actual disordered
coupled-cavity array, we need a criterion to select mode ¢.
Given the modes available for a given realization of the disor-
der and in the light of perturbation theory, mode £ can be chosen
as the one that maximizes |y¢|/|Ex — wy|. Then, a relationship
between cavity volume and localization length of the dominant
mode can be established of the form 7y, oc 5;” 2 [1L1]]. Once this
is set, the damping rate I" can be calculated, which is propor-
tional to the spectral density at w, excluding the contribution
from mode ¢.

We remark that the phenomenological model discussed
above does not describe the actual time dynamics of our sys-
tem. Rather, it encodes the main ingredients responsible for the
memory effects seen in the atomic dynamics, namely the trade-
off between Rabi oscillations and exponential decay. Another
model in the same spirit was proposed in [20]], based on a high-
Q cavity under the influence of a Lorentzian spectral density.
It is even possible to derive analytical expressions for N as a
function of I'/y,. Here, we will limit ourselves to highlighting
the general intuitive picture: as the participation ratio & of the
modes in close resonance with w, increases, I' becomes domi-
nant, leading to a Markovian regime.

4. Conclusions

In this work, we studied the non-Markovianity of atomic
emission into a coupled-cavity array featuring correlated hop-
ping disorder, modeled by a Gaussian kernel with a character-
istic correlation length L. This model provides a more realistic
representation of physical systems where imperfections arise
from correlated processes rather than completely random noise.

The Gaussian decay implies that cavities separated by a
distance much larger than L become essentially uncorrelated,

while parameter fluctuations involving nearby sites are effec-
tively weaker. For large L this significantly affects the localiza-
tion properties of wavefunctions, leading to large localization
lengths around the band center. This, in turn, favors Marko-
vian dynamics due to the weak atom-environment coupling. A
crossover to non-Markovian behavior was observed at larger
resonant frequencies w,, associated with the onset of localized
modes.

We also computed the long-time occupation probability (S)
across the coupled-cavity array after an initial transient. We
obtained that (S) — 1 only in the Markovian regime due ex-
ponential nature of the emission. Otherwise, there will be sig-
nificant trapping of the atomic population, which can be linked
to the characteristic low participation ratio & of the modes in-
volved as well as to the irregular shape of the spectral density
function G(FE) featuring gaps [[10]. We note, however, that in
real systems atomic excitation may eventually escape through
other dissipation channels in the long-time limit.

Disorder engineering in photonic lattices offers a promising
venue to study and manipulate quantum dissipation in the con-
text of cavity QED. Technological progress in field [25] 26} 27]
motivates further studies along the direction of the results pre-
sented here. Extensions of this work may target on, e.g. higher-
dimensional coupled-cavity systems [40], flat bands [41} 26],
and other classes of correlated disorder [31].
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