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Abstract
We study the wavepacket dynamics in a two-channel Anderson model with correlated diagonal
disorder. To impose correlations in the disorder distribution we construct the on-site energy
landscape following both symmetric and antisymmetric rules. Our numerical data show that
symmetric cross-correlations have a small impact on the degree of localization of the
one-particle eigenstates. In contrast, antisymmetric correlations lead to a reduction of the
effective degree of disorder, thus resulting in a substantial increase of the wavepacket spread.
A finite-size scaling analysis shows that the antisymmetric cross-correlations, in spite of
weakening the localization, do not promote ballistic transport. The present results shed light on
recent findings concerning an apparent delocalization transition in a correlated DNA-like ladder
model.

1. Introduction

The wavepacket dynamics in a low-dimensional system is
one of the main focuses of Anderson localization theory.
The absence of extended eigenstates in low-dimensional
systems with uncorrelated disorder has been predicted within
the scope of perturbation theory and supported by scaling
arguments [1]. Therefore the width of the time-dependent
wavepacket localizes in a finite region around the initial
position after a long-time run. More recently, it has been
shown that low-dimensional disordered systems can support
extended states or a localization–delocalization transition in
the presence of short- or long-range correlations in the disorder
distribution [2–17]. The effect of long-range correlated
scatterers on the transport properties of microwave guides was
experimentally studied and confirmed the presence of mobility
edges [17]. Moreover, it was suggested that an appropriate
algorithm for generating random correlated sequences with the
desired mobility edges could be used in the manufacture of
filters for electronic and optical signal processing [9].

The wavepacket dynamics in two-dimensional or multi-
channel systems with correlated disorder is still an open issue
with several connections to DNA geometry, semiconductors
and superlattices. In particular, the simple problem of the
electron dynamics in two-channel structures has been the focus
of several works [18–22]. The well-known random dimer
model [2] was generalized to the ladder case and a delocalized
state at the band center was obtained [18]. Recently, an

instructive debate about the possible existence of extended
states in DNA-like two-channel models has emerged [20–22].
By using numerical calculations of the inverse participation
ratio, it was claimed that a two-channel model based on DNA
segments could support extended states [20]. Furthermore,
on the basis of group theory arguments, it was proved
that intrinsic-DNA correlations due to base pairing does not
suffice to observe extended states [21]. Moreover, by using
perturbation theory [22], a general formula was obtained for
the localization length as a function of the autocorrelations
along each channel and also the cross-correlations between the
channels. In agreement with [21], it was proved that extended
states cannot appear solely due to cross-correlations (e.g. DNA
base paring). This discussion shows that the existence of
extended states in the two-channel model or DNA-like model
is still an open question.

More recently, it was shown that a quasiperiodic two-
chain model can support extended states at multiple values
of the Fermi energy [23]. Furthermore, it was demonstrated
analytically that a two-channel random model can display
a band of Bloch-type extended states when the on-site
potentials and the hopping amplitudes display a particular
correlation [24]. In [25] the effects of the coexistence of
localized and extended states in the correlated random ladder
model were investigated. By using numerical diagonalization
and high-order methods to solve the Schrödinger equation,
it was shown that stationary and dynamical properties
are dominated by extended states. In addition, it was
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numerically demonstrated that the superposition of localized
and delocalized bands gives rise to a new level-spacing
distribution [25].

The aim of the present work is to elucidate the underlying
physical mechanism behind the apparent delocalization
transition exhibited by some models of correlated DNA-
like tight-binding models [20]. Here, we will impose
cross-correlations in the disorder distribution by introducing
symmetric and antisymmetric rules between the on-site
energies of each channel. The dynamics of an initially
localized wavepacket will be investigated by numerically
solving the time-dependent Schrödinger equation. Our
numerical data show that, while symmetric cross-correlations
have a small influence on the degree of localization,
antisymmetric cross-correlations increase the wavepacket
spread. A finite-size scaling analysis shows that antisymmetric
cross-correlations, in spite of weakening the localization, do
not promote ballistic transport. Theoretical explanations of
the effect of cross-correlations in the wavepacket dynamics are
provided.

2. Model and formalism

Our calculations make use of an effective tight-binding model
Hamiltonian which describes the dynamics of an electron in
a ladder geometry with correlated disorder. Considering a
single orbital per site and nearest-neighbor interactions, the
time-dependent Schrödinger equation (with h̄ = 1) is given
by [21]

i
dψs

j

dt
= εs

jψ
s
j + V‖(ψs

j+1 + ψs
j−1)+ V⊥ψ s̄

j . (1)

Here s = ±1 labels each strand of the ladder and s̄ =
−s indicates its complementary. The index j = 1, . . . , N
runs over the sites along one of the strands coupled by
the hopping parameter V‖. V⊥ is the hopping parameter
between complementary sites on each strand. The on-site
cross-correlated energies εs

j will be generated as follows: ε+1
j

will be chosen as an uncorrelated random sequence with
〈ε+1

j 〉 = 0 and uniformly distributed within the interval
[−W,W ] (we take W = 1 hereafter); the on-site energy
of the other channel will be chosen as (a) ε−1

j = ε+1
j or

(b) ε−1
j = −ε+1

j . These distinct rules impose, respectively,
symmetric and antisymmetric cross-correlations in the two-
channel Hamiltonian.

We consider an electron initially localized at the orbital
| j0s0〉, namely, we take the initial condition ψs

j (t = 0) =
δ j j0δss0 . The set of equations above were solved numerically
by using a high-order method based on the Taylor expansion
of the evolution operator V (�t) = exp (−iH�t) = 1 +∑no

l=1(−iH�t)l/(l!), where H is the Hamiltonian. The
wavefunction at time�t is given by |�(�t)〉 = V (�t)|�(t =
0)〉. The method can be used recursively to obtain the
wavefunction at time t . To obtain H l|�(t = 0)〉, we will use a
recursive formula. As a first step, we define H l|�(t = 0)〉 =∑

j s(C
s
j )

l | j, s〉. Using the Schrödinger equation (1) we can
compute H 1|�(t = 0)〉 and obtain (Cs

j )
1 as

(Cs
j )

1 = εs
jψ

s
j + V‖(ψs

j+1 + ψs
j−1)+ V⊥ψ s̄

j . (2)

Therefore, using that H l|�(t =0)〉= H
∑

j s(C
s
j)

l−1| j, s〉,
(Cs

j )
l can be obtained recursively as

(Cs
j )

l = εs
j(C

s
j )

l−1 + V‖[(Cs
j+1)

l−1 + (Cs
j−1)

l−1]+ V⊥(Cs̄
j )

l−1.

(3)
Results were obtained by using �t = 0.5 and the sum was
truncated at no = 20. This cutoff was sufficient to keep
the wavefunction norm conservation along the entire time
interval considered. This formalism is faster than high-order
Runge–Kutta methods and it is easier to implement. We are
particularly interested in the square root of the mean-square
displacement σ(t) defined by

σ(t) =
√∑

j,s

[( j − j0)2 + (s − s0)2]|ψs
j (t)|2. (4)

σ(t) gives an estimate of the width of the wavepacket at
time t . In the long-time regime its scaling behavior can
also be used to distinguish between localized and delocalized
wavepackets [21]. In addition we compute the Lyapunov
exponent γ (E) (which is the inverse of the localization length
	) of long two-channel segments by means of the following
equation:

γ (E) = 1/	(E) = (1/2N) ln
[
Tr

∣
∣G N+1

1,N+1

∣
∣2

]
, (5)

where G N+1
1,N+1 denotes the Green’s function operator between

the first and the (N + 1)th pair of sites. To compute
this operator, we use a standard recursion method (see [26]
for details). For extended states, 1/	(E) vanishes in the
thermodynamic limit.

3. Results

The numerical solution of the time-dependent Schrödinger
equation was performed on two-channel systems with N =
1000 up to 16 000 sites on each strand. Numerical convergence
was ensured by conservation of the norm of the wavepacket
at every time step, i.e. |1 − ∑

j s |ψs
j (t)|2| < 10−10. All

calculations were averaged over 30 disorder configurations,
which were enough to keep statistical fluctuations much
smaller than the average value of all physical quantities
investigated. In figure 1 we plot the time-dependent
wavepacket width σ versus time t computed using N = 4000
sites, V‖ = V⊥ = 1, both kinds of cross-correlations and a
standard uncorrelated random two-channel system. We can
see that antisymmetric cross-correlations, ε−1

j = −ε+1
j (see

the dotted line), produce a localization degree much weaker
than the other cases (see the solid line data for ε−1

j = ε+1
j

and the dashed line for the uncorrelated case). In figure 2 we
offer a comparative numerical analysis between both types of
cross-correlations by considering the scaled wavepacket width
σ/N versus scaled time t/N . Calculations were done using
V‖ = V⊥ = 1 and N = 1000 up to 16 000 sites. For extended
states, data from distinct chain sizes would collapse into a
single curve, signaling a ballistic transport (σ ∝ t). In our
case, both calculations show no data collapse. Furthermore, the
scaled asymptotic wavepacket width decreases as the system
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Figure 1. The time-dependent wavepacket width σ versus time t .
Calculations were done using N = 4000 and considering distinct
kinds of cross-correlations within diagonal disorder. Antisymmetric
cross-correlations ε−1

j = −ε+1
j lead to a wavepacket width much

larger than that one produced by symmetric cross-correlations
ε−1

j = ε+1
j .

size increases, pointing to an ultimate localization of the
wavepacket in the thermodynamic limit. Therefore, the cross-
correlations used here do not induce the emergence of truly
extended states. These results agree with previous calculations
found in [21, 22], confirming that diagonal cross-correlations
are not sufficient to promote a metal–insulator transition in a
two-channel disordered Hamiltonian.

However, it is clear in both figures 1 and 2 that
antisymmetric cross-correlation ε−1

j = −ε+1
j leads to a

wavepacket spread much larger than the symmetric case
(ε−1

j = ε+1
j ). Let us stress that antisymmetric cross-correlation

contains the same ingredients used in the generic DNA model
studied in [20], i.e. when 〈ε−1

j + ε+1
j 〉 = 0. We will show

additional data and theoretical arguments to unveil the origin
of the substantial decrease of the degree of localization and
the apparent phase transition found in [20] in the two-channel
model with antisymmetric diagonal cross-correlations.

Let us first analyze in closer detail the two-channel model
with symmetric cross-correlated disorder. The Hamiltonian
model of an isolated dimer pair has eigenenergies given by
ε j ± V⊥. In the regime of strong inter-chain coupling these two
modes cannot be efficiently mixed by the intra-chain coupling.
Therefore the system shall behave as two uncoupled random
chains with energy offset given by ±V⊥ and the disorder
strength is simply the one originally present in the on-site
energies. Within this scenario, the degree of localization shall
be similar to the one present in the system without cross-
correlations. On the other hand, the Hamiltonian model of
an isolated dimer pair with antisymmetric diagonal terms has

eigenenergies given by ±
√
ε2

j + V 2
⊥. In the regime of strong

inter-chain coupling these can be written as ±V⊥ + ε2
j /2V⊥.

Also in this case, these modes are not effectively mixed by
the intra-chain coupling and the system shall behave as two

Figure 2. Scaled wavepacket width σ/N versus scaled time t/N .
Calculations were done using V‖ = V⊥ = 1 and N = 1000 up to
16 000 sites. Our calculations indicate that the asymptotic scaled
wavepacket width σ/N → 0 as N increases for both
cross-correlations used here, a typical signature of localized
wavepackets.

independent random chains. However, the effective disorder
is rescaled. It becomes of the order of 1/V⊥. Recalling that
the localization length in random chains is proportional to
the square of the inverse disorder width, antisymmetric cross-
correlations shall have exponentially localized states whose
localization length grows with V 2

⊥ in the regime of strongly
coupled chains.

In order to corroborate the above picture, we will provide
additional numerical data of the wavepacket width, density of
states and localization length of the energy eigenmodes for
both models with cross-correlated disorder, as well as for the
two-channel model with uncorrelated disorder. In figure 3(a)
we plot the wavepacket width σ(t) versus time t for N = 4000,
antisymmetric cross-correlations ε−1

j = −ε+1
j , V‖ = 1 and

V⊥ = 1 up to 5. The results show that the wavepacket spread
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Figure 3. (a) The wavepacket width σ(t) versus time t for
N = 4000, ε−1

j = −ε+1
j , V‖ = 1 and V⊥ = 1 up to 5. When the

intra-chain hopping V⊥ is increased in two-channel systems with
antisymmetric cross-correlations ε−1

j + ε+1
j = 0, the local effective

disorder along the quasi-unidimensional system goes to zero, thus
increasing the localization length. (b) Scaled spread σ/N versus
scaled time t/N for V‖ = 1, N = 1000 up to 16 000 sites and
V⊥ = 1 up to 5 and N = 1000 up to 16 000 sites. In spite of the fact
that antisymmetric cross-correlations favor the increase of the
localization length, it does not lead to truly extended wavepackets
once σ/N → 0 as N increases.

increases as the intra-chain coupling V⊥ is also increased.
However, even in the regime of strong intra-chain coupling V⊥,
the asymptotic scaled spread σ/N decreases with the system
size, indicating an ultimate localization in the thermodynamic
limit. Let us stress again that the calculations in [20] were
done by using a two-channel system with a strong intra-
chain coupling V⊥ > V‖. Therefore, the reduction on the
degree of localization reported in [20] actually reflects the
weakening of the effective disorder in the two-channel system
with antisymmetric cross-correlations and strong intra-chain
hopping. However, this specific cross-correlation does not
promote the emergence of truly extended states.

Figure 4. (a) The normalized density of states DOS(E) versus
energy E computed using N = 5000 sites, 500 disorder
configurations and (a) V⊥ = 1 and (b) V⊥ = 5. When the intra-chain
hopping V⊥ is increased in two-channel systems with antisymmetric
cross-correlations 〈ε−1

j + ε+1
j 〉 = 0, the density of states becomes

similar to the DOS of two uncoupled perfect chains with on-site
energies V⊥ and −V⊥. Symmetric cross-correlations produce a DOS
with rounded band edges, signaling that the underlying disorder
remains relevant even in the regime of strong intra-chain coupling.

To further illustrate the above point, we provide some
results from the exact diagonalization of the present two-
channel Hamiltonian models. We show in figure 4 the
normalized density of states (DOS(E) = ∑

En
δ(E −

En), where En are the eigenvalues obtained from numerical
diagonalization) versus energy E . Calculations were done
using N = 5000 sites, 500 disorder configurations, and
V⊥ = 1 and V⊥ = 5 (see figures 4(a) and (b)). When the
intra-chain and inter-chain couplings are of the same order,
the DOS displays a single band which starts to split in a
two-band structure when the intra-chain coupling is increased.
We already notice that, even in this regime of intermediate
intra-chain coupling, the band edges in the presence of
antisymmetric cross-correlations are sharper than in the other
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Figure 5. ((a), (b)) The localization length 	 versus energy E
computed using N = 107 sites, both kinds of cross-correlations and a
standard uncorrelated random two-channel system. Calculations
were done using V‖ = 1: (a) V⊥ = 1 and (b) V⊥ = 5. (c) The largest
localization length 	max versus intra-chain hopping V⊥. The
localization length diverges with (V⊥)2 in two-channel systems with
antisymmetric cross-correlations while it remains finite in the other
two cases.

cases. For large intra-chain hopping, the density of states
of the two-channel systems with symmetric cross-correlations
is quite similar to the one displayed by the corresponding
uncorrelated model. The DOS in these two cases resembles
the one of two uncoupled chains with a finite disorder width,
signaled by the rounding of the band edges. On the other hand,
the DOS of the model with antisymmetric cross-correlations
displays quite sharp band edges in the limit of strong intra-
chain coupling which is consistent with the vanishing of the
effective disorder.

In figure 5 we plot the localization length 	 versus
energy E computed using N = 107 sites for both kinds of
cross-correlations and a standard uncorrelated random two-
channel system. We consider V‖ = 1 and V⊥ = 1
and 5. Notice that, even in the regime of intermediate

intra-chain coupling, the localization length near the band
edges is one order of magnitude larger in the presence of
antisymmetric cross-correlations when compared with the
other two cases. This effect becomes much more pronounced
in strongly coupled channels. In figure 5(c) we plot the
larger localization length 	max versus the intra-chain hopping
V⊥. The localization length diverges as (V⊥)2 in two-
channel systems with antisymmetric cross-correlations, while
symmetric cross-correlations have a small influence on the
degree of localization. These numerical results corroborate our
theoretical arguments given above.

4. Summary and conclusions

In this work we revisited the problem of electronic wavepacket
dynamics in two-channel disordered structures. We considered
an Anderson Hamiltonian in a quasi-unidimensional geometry
(a two-channel geometry). In particular, we studied in
detail two distinct types of two-channel models with cross-
correlations within the diagonal disorder. By following
the time evolution of an initially localized wavepacket, we
showed that quasi-unidimensional structures with diagonal
disorder displaying local correlations do not support truly
extended states. In addition, we showed that symmetric cross-
correlations (ε−1

j = ε+1
j ) have a very limited influence on

the degree of localization. In contrast, antisymmetric cross-
correlations (ε−1

j = −ε+1
j ) substantially inhibit the Anderson

localization, especially in the regime of strongly coupled
chains. It is interesting to stress that the role of symmetric and
antisymmetric correlations has been previously investigated
in the context of Coulomb-correlated electron–hole pairs in
disordered semiconductors [27, 28]. It has been shown that the
delocalization action of the Coulomb potential is also stronger
for antisymmetrically correlated electron–hole site energies, in
close correspondence with our present results. The physical
mechanism underlying the phenomenology reported here was
revealed by stressing that, in the regime of strong inter-chain
couplings, the energy eigenmodes can be roughly decoupled
in those of two independent random chains with symmetric
energy offsets. While symmetric cross-correlations keep the
strength of the effective disorder finite, antisymmetric cross-
correlations leads to a rescaled disorder width which vanishes
as the inter-chain coupling increases. Such reduction of the
effective disorder is reflected in the localization length of the
energy eigenmodes, which can surpass 103 base pairs even for
moderate inter-chain couplings. Therefore, these states behave
as effectively extended in small systems, leading to an apparent
metal–insulator phase transition [20].
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