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Brazil

E-mail: gmaalmeida@fis.ufal.br

Abstract. Magnon-based quantum state transfer of a qubit is investigated in a one-

dimensional Heisenberg model featuring uncorrelated disorder. In the weak coupling

regime with respect do the boundaries of the channel, the presence of an anomalous

magnon mode with diverging localization length is harnessed to promote high-fidelity

state transfer despite the degree of exchange coupling disorder. Under the additional

influence of diagonal disorder due to the external magnetic field, we explore ways to

optimize the transfer fidelity by navigating through the disordered landscape so as to

identify extended states within the channel. Our results are relevant to the design of

magnon-based devices for information processing and communication amid the fast-

paced progress in the field of magnonics.
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1. Introduction

The success of data manipulation and storage in magnetic materials in the last few

decades has prompted the field of spintronics to develop into several branches [1, 2].

One of these is magnonics, which envisions fundamental collective spin excitations (or

magnons) as information carriers in the micro- and nanoscale [3]. Spin waves do not

involve actual motion of particles in space and so they beat standard electronics with

respect to energy dissipation due to the lack of Joule heat. Another advantage is the

relative easiness to drive a spin system into nonlinear regimes, thereby providing with

novel resources such as multi-magnon enhanced interaction [4], magnetic solitons [5] and

Bose-Einstein condensates [6, 7].

The coherent nature of spin dynamics can also be harnessed for the realization of

logic gates in magnon-based computation, light-matter interfaces, and more [3, 8, 9].

Although spintronics exists in its own realm, we have witnessed its integration with

quantum information processing over the years. Indeed, a whole field known as quantum

magnonics [10] has been surging with the goal of designing hybrid platforms that

couple magnons to other quantum systems including phonons, optical photons, and

superconducting qubits [11].

It is natural to think of spin systems as solid state models for quantum computation

where, e.g., spin−1/2 particles can act as qubits with their coupling mediated by

spin-spin exchange interactions. Indeed, with the goal of transmitting qubit coherent

states and distributing entanglement, spin chains are promising platforms for quantum

networks [12, 13, 14, 15, 16, 17]. Overall, achieving tailored coherent magnon dynamics is

paramount when interfacing spin chains with other quantum systems [11, 18, 19, 20, 21].

A basic requirement in any spin-based quantum device is the capability of

transmitting a spin excitation between distant sites with high fidelity, to which

various Hamiltonian engineering schemes have been proposed, especially on the

isotropic XY model [22, 23, 24, 25, 26, 27, 28, 25, 29, 30, 31, 32, 33]. In reality,

the transmission performance will depend on various factors including decoherence

rate, state initialization and measurement, control noise, physical platform, and

manufacturing imperfections. The latter leads to disorder, potentially resulting in

an incoherent (or diffusive) spin wave propagation [34]. While disorder is generally

detrimental to the state transfer quality [30, 35, 36, 37, 38, 39], spin chains with modified

boundary couplings [40, 41] are particularly robust against it [38], even more so when

the disorder is correlated [42, 43, 44, 45, 46]. In these cases, the correlation imprinted

in the disorder distribution promote the emergence of extended states among strongly-

localized states, what facilitates quantum communication mediated by long channels.

In this work, however, we investigate the coherent state transfer of a qubit encoded

in a Heisenberg linear chain featuring diagonal and off-diagonal uncorrelated disorder

(see scheme in Fig. 1). The absence of correlations in the disorder renders the

system more susceptible to Anderson localization effects [47]. Yet, we demonstrate

that leveraging correlations intrinsic to the Heisenberg interaction allows for end-to-end
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quantum communication with high-fidelity. This is done upon a judicious tuning of the

external magnetic fields acting on both outer spins, besides weak end couplings. Two

distinct scenarios are addressed. In the first case, we explore a resonant state transfer

mediated by an anomalous uniform magnon mode that is fully resistant to the off-

diagonal (exchange coupling) disorder. A scaling law for the fidelity F = 1− O(g2N3)

is derived with respect to the channel size N and boundary couplings g. In the second

scenario, we discuss the conditions for off-resonant high-fidelity state transfer based on

the availability of extended states within the channel. We will see that the competition

between both types of disorder enforces an optimal local energy for the communicating

spins, which is in the vicinity of the energy that corresponds the anomalous magnon

mode.

2. Methods

Consider a chain of N+2 spin−1/2 particles interacting via the Heisenberg Hamiltonian

H = Hend +Hch, where

Hend = − 2g(~S1 · ~S2 + ~SN+1 · ~SN+2)− ~h1 · ~S1 − ~hN+2 · ~SN+2, (1)

Hch = −
N∑
n=2

Jn~Sn · ~Sn+1 −
N+1∑
n=2

~hn · ~Sn. (2)

Here, the ~Sn is the spin operator at site n, Jn = J(1 + un) is the exchange coupling

strength, and ~hn is the local magnetic field. The first and last spins (labeled by indexes

1 and N + 2, respectively) are coupled to the channel (bulk) via the parameter g, which

we set g � J . Throughout this paper the energy is always expressed in units of J ≡ 1.

The channel, modeled by Hch, is assumed to be disordered. We consider that

un and hn are independent random variables uniformly distributed in [−WJ/2,WJ/2]

and [−Wh/2,Wh/2], respectively, restricted to WJ < 1 and Wh < 1. The magnetic

fields h1 and hN+2 are set such that their corresponding diagonal elements read

H1,1 = HN+2,N+2 = h0. With this parameter we can suitably tune the end spin states

with magnon modes that maximize the transfer performance [42, 43, 44].

The qubit to be sent through the channel is prepared as |φ1〉 = α| ↓1〉 + β| ↑1〉
on top of the ferromagnetic ground state | ⇓〉 – namely, all the other spins down

or, in the single particle language, the vacuum state – so that the input state reads

|Ψin〉 = |φ1〉| ↓2〉 · · · | ↓N+2〉. The Hamiltonian H preserves the net magnetization

of the system, rendering the spin wave to propagate in the single-excitation sector

only. Therefore, this symmetry ensures there is no interaction with higher magnon

states. Note that when the external magnetic field Wh is finite but weak, the ground

state undergoes small perturbations around a preferred direction of alignment. While

the spins may be slightly misaligned due to the disorder, the direction of the average

magnetization remains approximately fixed, allowing us to linearize the fluctuations

around this direction. Hereafter, we denote a state representing a spin flipped at site n
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Sender Receiver

Figure 1. Sketch of the quantum-state transfer scheme involving the one-magnon

states. The sender and receiver have access to the first and last nodes, respectively.

Both are weakly coupled to the channel (bulk) with strength g. All the edge rates

are shown up to a minus sign. The effective local energies Hn,n combine both

exchange couplings Jn and magnetic fields hn, which are random variables, with

exception of h1 and hN+2. These are taken as tunable parameters that provide

H1,1 = HN+2,N+2 = h0.

as |n〉 = | ↓1〉| ↓2〉 · · · | ↑n〉 · · · | ↓N+2〉. The input is recast as |Ψin〉 = α| ⇓〉 + β|1〉. We

mention that this kind of spin chain quench can be realized in photonic platforms [48].

The goal of the state transfer protocol is to maximize the conversion of the state

|1〉 to |N + 2〉 by means of the Hamiltonian time evolution while preserving the phase

relationship of the encoded qubit. The protocol performance is measured by the transfer

fidelity averaged over the input’s Bloch sphere, parameterized by α and β, [22]:

F (t) =
1

2
+
|aN+2(t)|

3
cos ξ +

|aN+2(t)|2

6
, (3)

where an(t) = 〈n|U(t)|1〉 is the transition amplitude between sites 1 and n, and

U(t) = e−iHt is the quantum time-evolution operator (time is expressed in units of

J−1). The output phase can be offset, cos ξ ≡ 1, by adjusting the external magnetic

field or applying a local rotation to the last spin at the end of the protocol. The average

fidelity is thus bounded between 1/2 and 1.

The transition amplitudes an(t) obey the Schrödinger equation(
Jn
2

+
Jn−1

2
+ hn

)
an −

Jn
2
an+1 −

Jn−1

2
an−1 = i

dan
dt

. (4)

The single-particle graph structure involving states |1〉 through |N+2〉 is depicted in Fig.

1. Note that our system be mapped onto a tight-binding model or, more specifically,

the isotropic XY model (often addressed in the context of quantum state transfer [22])

having those coupling parameters.

Alternatively, we can expand

an(t) =
N+2∑
k=1

〈n|λk〉〈λk|1〉e−iλkt, (5)

where the eigenvalues λk and eigenvectors |λk〉 are obtained here via exact numerical

diagonalization of H. All the quantities of interest presented below are averaged over

many independent realizations of the disordered Hamiltonian.
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Figure 2. (a) Localization measure R = rN versus E, with r given by Eq. (6).

Channel parameters are for WJ = 0.5, Wh = 0, and various system sizes are considered

as indicated in the figure. (b) Function r versus E and WJ considering N = 500.

Displayed results are averaged over 5000 independent realizations of disorder.

3. Results

In the following we provide a brief overview of the channel’s localization properties. We

then proceed to address two distinct quantum communication schemes that function

under the condition g � 1. The first one relies on a resonance between the outer

spins and the anomalous extended magnon mode. The second scheme strategically goes

off-resonant so as to bypass the effects of the disordered magnetic field.

3.1. Localization properties

Before diving into the state transfer protocol itself, let us explore some spectral

properties of the channel described by Hch [see Eq. (2)]. The purpose here is to search

for extended magnon states within the energy band, as their presence will impact our

adjustment of the local magnetic field h0 later. For now, we define the external magnetic

field homogeneous (by setting Wh ≡ 0 for convenience).

To characterize localized states, we employ the quantity

rk = max{|vk,n|2} −min{|vk,n|2}, (6)

where vk,n = 〈n|ψk〉 is the channel wavefunction at n (n = 2, . . . , N + 1) with

respect to the energy Ek. Since many disorder realizations are considered, in effect

we calculate r(E) =
∑
|Ek−E|<δE(rk/Nk), where Nk is the number of eigenvalues within

[E − δE/2, E + δE/2]. We fix the energy bin to δE ≈ 0.05. Extended magnon states

yield r ≈ 0 for any size N whereas localized states develop a relationship of the form

R ≡ rN ∝ N .

Figure 2(a) shows R versus E for a representative value of the coupling disorder

strength, WJ = 0.5. Calculations are done for system sizes of N = 500 up to N = 2000.

We readily note that the magnon mode associated to E = 0 exhibits R = 0, which

indicates a genuinely extended state. Indeed, in the absence of the external magnetic
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field the zero-energy magnon mode is given by |ψzero〉 = (1/
√
N)
∑

n |n〉 despite the

degree of the coupling disorder in WJ . Such an anomalous magnon mode with diverging

localization length is supported by the correlation between matching diagonal and off-

diagonal terms in the Heisenberg chain when hn = 0 [cf. Eq. (4)] [34]. Conversely,

localized modes are observed for E > 0, with R exhibiting a strong dependency on E.

Figure 2(b) also shows r for a range of E and WJ .

The presence of a disordered magnetic field (Wh 6= 0) is expected to significantly

impact the localization properties of the channel. We will see shortly that the magnon

modes with energies in the immediate vicinity of E = 0 are particularly fragile in this

respect.

3.2. Resonant state transfer mediated the uniform magnon mode

The extended magnon mode |ψzero〉 can mediate an almost perfect state transfer in the

regime g � 1 given h0 = 0, that is when the end spins are in exact resonance with that

mode. In turn, the effective three-site Hamiltonian is spanned [41]:

H(3) =

 0 g〈2|ψzero〉 0

g〈2|ψzero〉 0 g〈N + 1|ψzero〉
0 g〈N + 1|ψzero〉 0

 , (7)

on the basis {|1〉, |ψzero〉, |N〉}. It is straightforward to show that the transfer time in

this case is τ = π
√
N/
√

2g.

It should be highlighted here that any other discrete mode |ψk〉 would provide us

with an effective three-level as well given h0 = Ek [40]. If it allows for high-fidelity

state transfer or not depends on symmetry between both effective couplings (typically

destroyed by the disorder). Curiously, when N is even and also WJ = 0, there is another

uniform mode at Ek′ = 1 (|vk′,n| = 1/
√
N for all n). The difference is that it comes with

a well defined phase relationship between its components. Solving the time-independent

Schrödinger equation for vk′,n [see Eq. (4)], we obtain the rule vk′,n−1 = −vk′,n+1, with

vk′,2 = −vk′,3 and vk′,N = −vk′,N+1. A quick inspection shows that these conditions

cannot be fulfilled when N is odd. Furthermore, |ψk′〉 is unstable for any WJ and Wh.

The uniqueness of the zero-energy mode |ψzero〉 lies in its perfect robustness against the

coupling disorder WJ .

For the effective description in Eq. (7) to hold, interaction with the other modes

|ψk〉 with Ek 6= 0 must be minimized. We expect that larger sizes N will demand smaller

values of g as more modes appear in the vicinity of E = 0. Figure 3(a) shows the fidelity

F (τ) evaluated over this parameter space for WJ = 0.5 in the absence of a magnetic

field (Wh = 0). The contour lines cover points of constant F (τ). The logarithm scale

enables us to identify a linear relationship between logN and log g, which can generally

be cast in the form Nµ ∝ g−ν . It is thus reasonable to assume that the fidelity scales

as F (τ) = 1 − O(gνNµ). Further numerical analysis in Figure 3(a) yields ν = 2 and

µ = 3 to great accuracy. In fact, these exponents hold for the range of coupling disorder
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Figure 3. Contour plots (in log-log scale) of F (τ) in the (N, g) parameter space for

(a) Wh = 0 and (b) Wh = 0.05, with WJ = 0.5 and h0 = 0 in both cases. Data is

obtained via exact diagonalization of 100 distinct realizations of the full Hamiltonian

H. Straight lines in (a) are associated to constant values of F (τ) and gνNµ. A more

detailed numerical analysis provides ν = 2 and µ = 3, such that the fidelity obeys the

scaling law F = 1− O(g2N3). Other values of WJ < 1 (weak disorder regime) in the

absence of a magnetic field render similar plots. In (b) we emphasize how seriously the

zero-energy uniform mode is affeceted by the presence of a disordered magnetic field

given by Wh = 0.05.

considered in this work, WJ < 1. A high-fidelity state transfer is then guaranteed as

long as g � N−3/2. Setting g = εN−3/2 close-to-perfect fidelities F = 1 − O(ε2) can

be achieved in a time τ ∝ N2/ε. We remark that it differs from the scaling of the

transmission time in homogeneous isotropic XY chains with an odd number of sites,

which is ∝ N/ε [40].

Now, Fig. 3(b) shows what happens when we add a weakly disordered magnetic

field (Wh = 0.05). Already at this level, the state transfer becomes quite ineffective.

This occurs because, as pointed out earlier, the zero-energy mode |ψzero〉 cannot hold

against the loss of correlation between diagonal and off-diagonal terms of the channel

Hamiltonian. Add to this the fact that the all energy levels Ek of the channel fluctuates,

no longer rendering a resonant interaction such as the one described in Eq. (7) at a fixed

tuning energy h0. Finally, we remark that the relatively good fidelities F ≈ 0.8 seen in

the bottom right corner Fig. 3(b) occur as a result of the small N and (not so small)

g ≈ 0.01 considered. In this particular scenario, the increasing of g invites the magnon

modes closer to E = 0 to participate in the dynamics. At the stage set by WJ = 0.5

and Wh = 0.05, these modes are not seriously affected by the disorder. But then again,

this is just a small-size effect that rapidly fades with N [cf. Fig. 2(a)].

3.3. Off-resonant state transfer

The situation described just above involving a disordered magnetic field, Wh 6= 0, and

N � 1 can be resolved by setting an off-resonant state transfer protocol [40, 41, 42]. In
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the regime g � 1, when h0 6= Ek for all k, both end states |1〉 and |N + 2〉 effectively

behave as a two-level system described by the Hamiltonian [41]:

H(2) =

(
ω1 Jeff

Jeff ω2

)
, (8)

where

ω1 = h0 − g2
∑
k

|vk,2|2

Ek − h0

, (9)

ω2 = h0 − g2
∑
k

|vk,N−1|2

Ek − h0

, (10)

Jeff = −g2
∑
k

vk,2v
∗
k,N−1

Ek − h0

, (11)

with the summations covering all N − 2 modes of the channel.

In this interaction framework, end-to-end Rabi oscillations (two-level dynamics)

are responsible for the state transfer. After diagonalization of the effective Hamiltonian

above, it is straightforward to obtain the corresponding transition amplitude

aN(t) =
1√

∆2
eff/4 + 1

sin

[(√
∆2

eff/4 + 1

)
Jefft

]
, (12)

where ∆eff = (ω1−ω2)/Jeff is effective detuning between the two renormalized diagonal

energies. Given ∆eff = 0, which is ideal, the state transfer occurs at time τ = π/2|Jeff |.
This scenario is trivially met when the Hamiltonian of the channel possesses mirror

symmetry or bipartite symmetry [31]. The first condition leads to ω1 = ω2 and the

second one renders both summations in ω1 and ω2 null given h0 is set right at the

middle of the energy band. Note that quantum noise in general would be harmful to the

protocol. Any dissipation rate should be small enough so that at least one half-cycle of

the Rabi dynamics is completed. In adittion, based on the results obtained in [40] for

the homogeneous channel (see [31] for arbitrary 1D channels), the transfer time scales

as τ ∼ 1/g2, with F = 1−O(g2N). Hence g �
√
N to guarantee high fidelities.

Obviously, a fully disordered spin channel has neither of those two symmetries

above. Nonetheless, it is possible to minimize ∆eff by searching for magnon modes with

some degree of symmetry left (say, by being nearly mirror symmetric with respect to the

boundaries of the channel). This happens frequently, for instance, in channels featuring

correlated disorder, where extended states are spanned among localized states (see, e.g.,

Refs. [43, 44]). For the sake of reference, a good fidelity must be larger than 2/3, which

is the limit that can be achieved purely by classical means [22, 49]. This threshold

corresponds to ∆eff = 4.39 [cf. Eqs. (3) and (12)]. Hence, effective detunings below this

level must be sought.

While magnon modes with larger localization lengths are readily accessible in the

vicinity of E = 0, at least for Wh � 1, let us look further into the spectrum for a more
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Figure 4. Absolute value of the effective detuning ∆eff = (ω1 − ω2)/Jeff (in log

scale), associated to Eq. (8), versus the tuning energy h0. Data is obtained from

exact numerical diagonalization of the channel Hamiltonian considering N = 40 for

(a) WJ = 0.01, (b) WJ = 0.1, and (c) WJ = 0.5. The disorder strengths corresponding

to the external magnetic field are Wh = 0 (black circles), Wh = 0.01 (blue squares),

Wh = 0.1 (red diamonds). Displayed results are averaged over 100 independent

disordered samples.

Figure 5. Spatial configuration of the channel modes given by |vk,n| = |〈n|ψk〉| for

N = 40 and disorder strengths (WJ ,Wh) = (0, 0), (0.1, 0), and (0.1, 0.1) corresponding

to panels (a), (b), and (c), respectively. Single typical realizations of the cases involving

disorder are shown in (b,c). The mode index k is ordered with respect to increasing

eigenvalues Ek.

comprehensive analysis. Figure 4 depicts ∆eff over a range of tuning energies h0 and

various combinations of WJ and Wh. As suspected, having h0 → 0 is not a viable option

when Wh 6= 0. Note that the coordinate h0 = 0 is not included in the plots because the

effective parameters [Eqs. (9) through (11)] diverge for Wh = 0. The role of each source

of the disorder (diagonal and off-diagonal) is made evident in the figure. As WJ drives

an asymmetric ∆eff ×h0 profile – preserving extended states closer to zero-energy mode

– the increase of Wh promotes strongly localized states at both boundaries of the energy

band, a typical trait of Anderson localization. We also draw attention to the atypical

drop in ∆eff in the vicinity of h0 = 1 for weak disorder [see Figs. 4(a) and 4(b)]. This is

nothing but a residual response to the hitherto uniform mode k′. As explained earlier,

this magnon mode is susceptible to both forms of disorder. Interestingly, the quantity

∆eff also serves as a localization measure for the modes in the vicinity of h0.

We get a better perspective of the localization landscape amid the influence of

WJ and Wh in Fig. 5, where the spatial components of the magnon modes are shown
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Figure 6. Transfer fidelity F (τ) versus magnetic-field disorder strength Wh for

N = 42, g = 10−4, (a) WJ = 0.1, and (b) WJ = 0.5. The tuning energies h0

considered are specified on panel (a) and also applies to (b). Results are averaged over

100 independent realizations of the full Hamiltonian. The transfer time π/2|Jeff | was

set individually in each realization.

for selected parameters. In the clean case [Fig. 5(a)] extended modes fill the whole

energy spectrum. Under the influence of the coupling disorder (WJ = 0.1) [Fig. 5(b)]

localized states emerge as we depart from E = 0 (k is ordered with increasing Ek).

Indeed, strongly localized modes are prominent at higher k values. It is also noteworthy

that the low-energy region remains almost unaffected. Now, when the two forms of

the disorder are acting upon the channel (WJ = Wh = 0.1) [Fig. 5(c)] both low- and

high-energy spectrum boundaries are compromised. The spatial profile seen in Fig. 5(c)

corresponds to the behavior of ∆eff depicted by the red triangles in Fig. 4(b), where the

middle of the energy band still offers conditions for high-fidelity state transfer.

The optimal value for h0 hinges on the competition betweenWJ andWh. Examining

the data in Fig. 4, we realize that h0 should generally be set around the center of the

band against Wh, for low values of WJ . Indeed, by finally reporting on the fidelity

outcomes F (τ) = F (π/2|Jeff |) for WJ = 0.1 in Fig. 6(a), we see that h0 = 1 provides

better resilience against Wh, followed by h0 = 0.1, and h0 = 0.01. The exception to

that rule comes as WJ is high to such an extent that the only way to avoid ∆eff > 4.39

is by tuning h0 to a level slightly above (but not so close to) zero [see, e.g., 4(c)].

Figure 6(b) confirms this behavior, where h0 = 0.1 under entails the best state-transfer

performance under WJ = 0.5, rendering fidelities above the classical threshold of 2/3 up

to Wh = 0.1. Comparing Figs. 6(a) and 6(b), it is remarkable to observe how distinct

the performances associated to h0 = 1 are, what confirms that the middle of the band

(and surroundings) should be avoided for higher values of the exchange coupling disorder

Wh.
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4. Conclusions

Spin waves offer novel pathways for signal processing, wave-based computation, and

integration to quantum information processing devices [3]. By taking leverage of their

high-degree of coherence, information can be encoded in the spin state and sent through

relatively long channels even under considerable disorder.

We have seen that the landscape of localized states across the channel is defined

by the interplay between the diagonal and off-diagonal disorder in the Heisenberg

Hamiltonian. By properly navigating through the fluctuations via the tuning energy

h0, we showed that high-fidelity state transfer can be attained in different situations.

In the scenario where only the WJ 6= 0, we may use the anomalous magnon mode at

E = h0 = 0 to mediate the state transfer between the ends of the chain. This mode

is disorder-proof and yields a fidelity that scales as F = 1 − O(ε2) occurring in a time

τ ∝ N2/ε given ε � 1 (meaning g � 1). When both WJ 6= 0 and Wh 6= 0, then the

Rabi-like (off-resonant, two-level) spin dynamics takes place. Depending on the value of

WJ – which promotes an asymmetric distribution of the localization lengths throughout

the spectrum – h0 may be set not so far above E = 0, where the typical mode localization

length is larger. Otherwise, when the influence of the diagonal disorder is more relevant,

better state transfer performances are obtained by tuning h0 to the middle of the band.

The ability to apply magnetic fields to individual spins without affecting

neighboring spins poses a significant experimental challenge. However, recent

advancements in atomic-scale magnetic field engineering provide encouraging evidence

that selective magnetic field control is feasible at the level of individual spins, particularly

in controlled low-temperature environments. For instance, a recent work [50] on single-

atom magnets using dysprosium adsorbed on magnesium oxide surfaces demonstrated

how dysprosium atoms can retain magnetic stability due to their high magnetic

anisotropy energy. In these setups, the spins remain stable for extended periods,

thus suggesting a route for local magnetic field tuning. This stability allows for

targeted control of magnetic fields in atomic-scale systems, though these applications

have thus far been successful primarily under ultra-low temperature conditions. While

the disordered model described here requires experimental validation for systems

containing tens of spins, our findings will inspire further developments in scalable

spin systems designed for quantum state transfer. Note that the addressed protocol

could be simulated in any platform able to perform tight-binding models, such as

coupled waveguide arrays, where state-of-the-art technology allows for tuning of the

parameters (diagonal and off-diagonal terms) with a high degree of control as done

in, e.g., [48, 51, 52, 53] in various contexts. In such photonic settings, the exchange

couplings would be defined by distance between adjacent waveguides and the effective

potential would be given by the refractive index [53]. It is worth mentioning that the

an experimental simulation of a perfect quantum state transfer protocol conceptualized

for spin chains was performed in a waveguide array via judicious tuning of the coupling

strengths [54]. In addition, there has been significant progress in realizations of quantum
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information protocols in bulk materials [14, 55] (see also theoretical simulations in [56])

and quantum dots [57] mediated by exchange interactions.

Considering a realistic spin chain setting, the protocol implicitly demands very

low temperatures. It is be possible to consider the effects of a heat bath using, for

example, the Langevin formalism. In general terms, a Langevin bath would promote

atomic vibrations, allowing, for instance, the alteration of spin-spin coupling. The

resulting effective term would thus manifest as a time-dependent additional disorder

distribution. We can then anticipate that high temperatures compromises the fidelity

of the quantum state transfer protocol. Recall that the fidelity must be larger than the

classical threshold of 2/3 so as to justify the use of a quantum channel. Nevertheless,

proper encoding schemes and choice of the spin network topology can be used to mitigate

temperature effects [58, 59, 60]. These, on the other hand, may be less detrimental to

long-range interacting spins [61]. Considering, e.g., cold atoms in optical tweezers [62]

as a promising platform to realize spin models, finite temperature can cause positional

disorder in the particles [61].

Here, we did not attempt to derive general scaling laws for the fidelity or the

optimal h0 with respect to the disorder parameters WJ and Wh. This can be done in

future works. Rather, we wanted to focus on the use of the anomalous magnon mode

and the nearby extended states as a mean to achieve high-fidelity state transfer despite

the disorder. Amid the fast and remarkable progress in the field of magnonics, including

its integration with quantum information processing concepts [10], we hope to see more

research addressing the role of disorder in magnon-based quantum communication.
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