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Abstract
The transmission of a qubit in a tight-binding channel with exponentially decaying
hopping terms and diagonal disorder is investigated. The end sites act as sender and
receiver and are perturbatively coupled to the channel. This is done to suppress inter-
ference of the channel modes during the time evolution of the state. We explore the
performance of the transfer fidelity against the disorder strength and hopping range
within the channel. The scaling behavior of the participation number as a function
of the hopping range is also discussed. Channels featuring long-range interactions
display distinct robustness against disorder and high-quality quantum state transfer is
attainable even for disorder levels of the order of the largest hopping amplitude.

Keywords Quantum communication · Qubit transfer · Anderson localization ·
Disordered systems · Spin chains

1 Introduction

In recent years, theoretical and experimental research on quantum information pro-
cessing have become a very active topic in a range of fields. A current challenge is
to develop robust quantum devices able to handle several qubits with an error rate
below an acceptable threshold [1]. Among many tasks, quantum processors must per-
form quantum state transfer (QST) protocols from one location to another with high
fidelity [2, 3]. Quantum networks are often designed in hybrid light-matter platforms
[4] so as to make use of advanced photonic technology. However, the frequent conver-
sion between stationary and flying qubits can lead to decoherence [5]. Alternatively,
minimum-control QST protocols can operate on engineered spin chains evolving via
their Hamiltonian dynamics up to a specified time. This idea was put forward by Bose
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in Ref. [6], where a simple uniform chain was shown to provide with better-than-
classical fidelities at short distances. Coupled spin−1/2 chains with interactions have
since been explored in many forms, each with its own speed-fidelity merit [7–24].

Away toperform long-distance quantumcommunication is to harness the symmetry
of the lattice and set about edge states having negligible overlap with the bulk. This
can be done by, e.g. applying strong magnetic fields close the sender and receiver [19,
21] and by setting perturbative end couplings [9, 10]. These configurations are often
robust against noise as they do not rely on strict engineering schemes [25]. Modified
structures such as the dimerized Su-Schrieffer-Heeger chain can offer extra topological
protection [26] with the cost of having longer transfer times τ [22, 27]. In Rabi-like
QST protocols one has τ ∝ g−2 with the fidelity scaling as 1 − O(g2), g being the
perturbation parameter [10]. Recently, a dimerized chain with time-dependent next-
to-nearest-neighbor couplings has been proposed as a much faster alternative while
also being robust against uncorrelated and correlated disorder [28]. The manipulation
of parameters associated with correlations in the disorder distributions [29–33] have
been recently explored concerning a potential impact on the quantum state transfer
efficiency. This feature is directly related to the influence of disorder correlations on
the localized/delocalized nature of quantum states [34–36].

Spin chains featuring long-range interactions can also host high-fidelity QST [14,
24]. A non-isotropic Heisenberg XXZ chain has recently been investigated in which
the couplings decay as a power-law featuring a tunable exponent and symmetrically
coupled sender and receiver sites [24]. It is shown that an increase in the dimensionality
of the system can result in an effective end-to-end coupling resulting in Rabi-like oscil-
lations [24]. In addition, they suffer less from temperature-induced disorder compared
to chains with nearest-neighbor couplings only [24]. However, although power-law
decaying interactions arise in some specific physical systems such as those with dipo-
lar interactions [37, 38], tight-binding hopping amplitudes depict an exponential decay
with distance in general condensed matter systems with screened interactions. This
results from the typical exponential decay of the localized atomic orbitals that imposes
a similar decay to the exchange integrals involved in the hopping amplitude calcula-
tion.

Those and other results establish that the topology of the channel plays a crucial
role in the quality of a QST protocol running in the Rabi regime [27]. In this work,
we explore in detail the localization properties of a channel displaying exponentially-
decaying hopping amplitudes ∝ e−νr commonly found in condensed matter systems.
The exponential decay of the couplings is not able to induce an effective higher dimen-
sionality of the system as it occurs in the presence of power-law decaying interactions
[37]. Therefore, no extended states are supported by the system in the thermodynamic
limit. However, the relation of the relevant length scales associated with the system
size, localization length and typical range of the interaction is expected to determine
distinc quantum state transfer regimes. The decay rate with distance r is controlled
by a single parameter ν which in the limit ν → ∞ renders the usual 1D configuration
with nearest-neighbor interactions. We seek for the energy range within the channel
spectrum where the highest fidelity can be obtained when two end spins are weakly
attached to it. Remarkably, even when the diagonal disorder strength is a few times
larger than the maximum hopping amplitude (≡ 1) fidelities above 0.9 are obtained
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given ν is low enough. Under these terms, long-range spin chains are preferable to
standard, nearest-neighbor 1D models.

2 Hamiltonianmodel

Consider a onedimensional spin-1/2 chain with open boundary conditions composed
of N + 2 particles coupled via XX interactions. In the single-excitation subspace
spanned by |n〉 ≡ |0〉⊗n−1 |1〉 |0〉⊗N+2−n (n = 1, . . . , N + 2), the system can be
expressed as a tight-binding Hamiltonian of the form

H =
N+2∑

n=1

εn |n〉〈n| +
∑

n,m;n 	=m

Jn,m |n〉 〈m| , (1)

where εn are the on-site energies and Jn,m = Jm,n are the hopping amplitudes. The
sender and receiver are represented by sites 1 and N + 2, respectively. Sites 2 through
N + 1 then form the channel.

Let us now consider that the communicating parties are coupled to the channel via
J1,2 = JN+1,N+2 = g whereas the amplitudes within the channel decay exponentially
as

Jn,m = exp[−ν(rn,m − 1)], (2)

where rn,m = |n−m| represents the distance between sites n andm, with 1 < n(m) <

(N + 2) and n 	= m. The decay parameter ν is such that its inverse sets the typical
range of the interaction. Nearest-neighbor amplitudes read Jn,n+1 = J ≡ 1 and set
our reference energy scale.

As commented above, such decay law of the hopping amplitudes usually takes place
in condensed matter systems with screened short-range interactions due the exponen-
tially localized character of the atomic orbitals involved in the exchange coupling
interactions. Contrasting with one-dimensional systems having power-law decaying
couplings that can effectively behave as a higher dimensional system with short-range
couplings [37], the exponential decay law of the hopping amplitudes does not change
the one-dimensional character of the system. As such, all states remain exponentially
localized in the thermodynamic limit. In finite chains, it is the relation between the
three relevant scale lengths (system size, localization length, and typical decay length
of the interactions) that will ultimately determine the distinct regimes of localization
and, consequently, govern the efficiency of the QST.

We will work in the weak coupling regime where g 
 1 so as to induce resonant
Rabi-like oscillations between sites 1 and N + 2 [9]. Now, the local energies of the
communicating spins are also set as a tunable parameter ε1 = εN+2 = ω. It will be
used to screen the spectrum of the channel to optimize the transfer fidelity [39]. The
on-site energies within the channel εn (n = 2, . . . , N + 1) are uncorrelated random
numbers uniformly distributed within the range [−W/2,W/2], where W stands for
the disorder strength. Our goal here is to test the QST performance against W for a

123



  327 Page 4 of 13 F. J. A. Filho et al.

Fig. 1 Density of States (DOS)
versus energy E (in units of
J ≡ 1) for ν = 0.5, 1, 5, 10 and
W = 2. Note the asymmetric
profile when the hopping
amplitudes are significant at
longer distances (small ν)
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range of ν and ω values. Before that, though, we discuss the localization profile of the
channel in the following section.

3 Results

3.1 Localization properties

Our analysis is entirely done via exact diagonalization of the Hamiltonian in Eq.
(1). For now, let us take sites 1 and N +2 aside (g = 0) and focus only on the channel
modes (spanned by states |2〉 through |N + 1〉).

We begin by measuring the density of states defined by DOS = ∑
k δ(E − Ek),

where Ek are the eigenvalues of the channel. Results are depicted in Fig. 1 for ν =
0.5, 1, 5, 10 and W = 2. We readily see that for large ν we approach the usual profile
of a 1D lattice with neareast-neighbor hoppings. For small ν, the DOS exhibits an
asymmetric form which is typical of long-range hopping models.

To quantify localization along the spectrum we evaluate participation number
defined as

P(Ek) =
[
∑

n

(z(k)n )4

]−1

, (3)

for a given eigenvalue Ek , where z(k)n = 〈n|Ek〉 is the corresponding wavefunction
at n. The participation number diverges with N for extended states. If the state is
localized, then it remains constant and shall significantly impact the QST when the
typical localization length is much smaller than the system size [39].

Figure 2 shows the resulting participation number averaged over 300 independent
realizations of disorder. Due to the fluctuations the participation number is averaged
out over small energy intervals as P(E) = ∑

|Ek−E |<�E P(Ek)/NE , with �E = 0.1
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Fig. 2 Average participation number P(E) versus energy E for ν = 0.5, 1, 5, 10, with W = 2. States
populating higher energies are significantly less localized for slowly decaying hopping amplitudes

and NE being the number of states with having between E − �E and E + �E . For
higher values of ν, the participation number is almost insensitive to N , which is the
expected outcome for uncorrelated disordered 1D systems. That is when Anderson
localization effects take over.

In contrast, for small values of ν the participation number, besides displaying an
asymmetric profile, is largely affected by the size N at higher energy levels (see the
curves for ν = 0.5 at E ≈ 3.5 in Fig. 2).

We now compute the average participation number 〈P〉 and observe it against
the system size N in Fig. 3a for several values of ν. They suggest that for large
N maximum participation number saturates and this points out to the existence of
localized states. To see it further, we proceed with a finite-size scaling. In each case
we rescale the participation number by its maximum 〈P〉max and the system size
N by the same amount. This results in the data collapse shown in Fig. 3b. Such a
procedure is based on the single-parameter scaling hypothesis. According to that, the
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Fig. 3 a Average participation number 〈P〉 versus N for ν = 0.3 up to 0.9, with fixedW = 2. b Collapse of
the previous data using the rescaled variable 〈P〉/〈P〉max as a function of N/〈P〉max. c The characteristic
localization length 〈P〉max scales as 1/ν3

average participation number can be written as 〈P〉(N , ν) = Pmax(ν) f [N/Pmax(ν)],
where Pmax(ν) represents the typical average localization length. For N/Pmax � 1,
the scaling function f [N/Pmax(ν)] converges to unit. In contrast, for short chains
N/Pmax 
 1, f [N/Pmax(ν)] ∝ N/Pmax(ν) rendering the average participation to
grow linearly with N , as expected in the regime of negligible disorder.

In Fig. 3c we obtain Pmax ≈ 1/ν3 for a range of small ν values.
From the analysis above we can conclude that the channel does not host strict

extended states in the thermodynamic limit. However, our calculations indicate that
an increase in the hopping range (small ν) suppresses the localization degree (as readily
seen from the increase of the participation number in Fig. 2). This fact can be useful
in the context of QST through finite channels, particularly for sizes of the same order
of the typical localization length.
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Fig. 4 Maximum fidelity versus ω for N = 100, considering ν = 0.5, 1, 2, 3, 4, 8, W = 1, 2, and fixed
g = 0.01. Fmax is averaged over 100 independent realizations of disorder. Note that QST performance is
greatly improved for lower values of ν.

3.2 Quantum state transfer

We are now ready to investigate the single-particle dynamics through the chain. Our
primary interest is to assess the performance of transmission of a single qubit from
site 1 to site N + 2 (we are now back to the full form of the Hamiltonian in Eq. (1)).

An arbitrary qubit with amplitudes α and β prepared at the first site while setting all
the remaining sites at the zero (spin down) state forms the initial state |ψ(t = 0)〉 =
α |vac〉 + β |1〉, where |vac〉 ≡ |0〉⊗N+2. The goal is to recover the same qubit state
at the last site N + 2. The proper measure of performance here is the transmission
fidelity averaged over all possible input values (α, β), i.e., over the Bloch sphere (of
radius |α|2 + |β|2 = 1). The so-called averaged fidelity reads [6]

F(t) = 1

2
+ |cN+2(t)|

3
+ |cN+2(t)|2

6
, (4)

where cN+2(t) = 〈N +2|e−i Ht |1〉 is the transition amplitude from site 1 to site N +2
due to the quantum time evolution operator. In the formula above we are effectively
taking arg{cN+2(t)} = 0 at the arrival time, which can be realized by applying a local
rotation to the last spin. A well defined Rabi-like scenario in our protocol is implied by
the occurrence of a pair of eigenstates ∼ (|1〉 ± |N + 2〉)/√2. That renders a fidelity
close to unit, with the worst case scenario being F = 1/2.

The transfer time for Rabi-like QST protocols is τ = π/δ, where δ is the small gap
∝ g2 between the edge modes. Due to disorder, τ will fluctuate. For now, instead of
evaluating the fidelity at a specific timewe present themaximumfidelity Fmax obtained
from t = 0 up to t = 100 × g−2. This ultimately allows us to estimate the quality
of the QST. Unless stated otherwise, the numerical simulations in the following are
performed for 100 independent realizations of disorder, with N = 100 and g = 0.01.
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Fig. 5 Maximum fidelity versus
the disorder strength W for
distinct values of ν, with
N = 100 and g = 0.01

In Fig. 4 we plot Fmax versus the on-site energy ω = ε1 = εN+2 for several
exponents ν and distinct disorders strengths W . We see that for large ν, the QST is
largely affected by the disorder, yielding fidelities way bellow the classical threshold
F = 2/3 [6] when W = 2. Indeed, Zwick et al. found that various nearest-neightbor
1D configurations obey the scaling law F = 1

2 (1+e−aNWb
), with a and b being fitting

parameters [25]. Even asweak-couplingmodels typically offer better resilience against
disorder compared to other schemes, W = 2 is beyond tolerable. On the other hand,
the QST performance gets a tremendous boost (offering F > 0.9) for lower values of
ν even at that disorder levels as high as W ≈ 4 (see Fig. 5). Recall that the maximum
hopping amplitude is J ≡ 1.

Figure 4 also highlights the role of the local energy ω. The fidelity is maximized
whenever ω meets an energy range mostly populated by modes having larger localiza-
tion lengths [cf. Fig. 2]. This indicates that a proper effective resonant two-level (Rabi)
regime calls for delocalized eigenstates with energies close toω or else a detuned Rabi
dynamics is achieved (even as g → 0) [27].

In Fig. 6 we show the probability distribution P(Fmax) forW = 1 andW = 2. This
is done for ω fixed at levels that provide the best QST performances. For example, we
pick ω = 4 for ν = 0.3 and W = 2. We indeed confirm that for small values of ν, it
is most likely to obtain F(τ ) ≈ 1.

The QST analysis so far has been based on the evaluation of the fidelity within a
broad time window. While it offers a good figure of merit, any QST protocol in reality
requires a pre-established measurement time. Timing errors will naturally be present
due to the fluctuations occurring in the gap δ. The disorder can also shift the energies
of the channel modes toward ω. In this case, the Rabi-like framework is compromised
unless g → 0. A perfect resonance betweenω and some channel mode will eventually
lead to an effective three-level dynamics and may also suit for QST albeit in a distinct
timescale [9].
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Fig. 7 QST timescale parameter
|�| versus ν for N = 50,
W = 0, and ω = 0. In the limit
of nearest-neighbor interactions
|�| → 1
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In Rabi-like QST protocols, the transfer time is τ = τ/δ, with δ = 2g2|�|, where

� =
∑

k

z(k)2 z(k)
∗

N+1

Ek − ω
(5)

is obtained via perturbation theory applied to the channel Hamiltonian [9, 27]. For 1D
channels with nearest-neighbor interactions, |�| = 1 (in units of 1/J ) [9, 27] given ω

lies at the center of the band. In Fig. 7 we display this parameter against ν for ω = 0
and W = 0. All the spikes in the curve indicate resonant points where Ek = ω for
some k. In other words, � diverges. As a consequence, the effective Rabi dynamics
ceases to hold. The number of these singularities and their corresponding values of ν

vary with N . Note that |�| → 1 as ν grows, as expected.
Once the channel parameter� is known for the ideal scenario (W = 0), the transfer

time τ can be prescribed. Let us finally see how the fidelity F(τ ) behaves in the
presence of disorder. Figure 8 shows the results against ν for distinct disorder strengths
W and tuning energies ω. When ω = 0 [Fig. 8a] the fidelity drops rapidly upon
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Fig. 8 Averaged fidelity F(τ ) versus ν evaluated at the expected time τ = π/(2g2|�|), with � defined for
W = 0. Tuning energies are a ω = 0 and b ω = 3 for N = 100 and g = 0.01. Various disorder strengths
W are considered and the curves are averaged over 100 independent realizations of disorder

increasingW for any ν. Yet, moderate values of disorder should provide with fidelities
above the classical threshold F = 2/3 [6]. Now, when ω is set more conveniently
[ω = 3 in Fig. 8b] the fidelity is quite robust against disorder and also timing errors up
to ν = 1. Above this level, the fidelity sharply decays. Surprisingly, even whenW = 1
the fidelity evaluated at the expected time τ is close to unit given ν is low enough. We
remark the unstable behavior of F(τ ) in Fig. 8 is largely due to the proximity between
ω and some Ek (given g = 0.01 is fixed), as ν varies.

4 Conclusions

Some degree of disorder will always be present in engineered solid-state devices
for quantum communication protocols. It may manifest as fluctuations in the static
parameters of the network. Therefore, any quantum communication protocol should
take that into account [25].

We have put forward a high-fidelity QST protocol on a tight-binding chain featur-
ing hopping amplitudes decaying exponentially in the presence of significant levels
of disorder. Long-range interactions generally increases the number of pathways to
delocalization and play a crucial role in other phenomena such as many body local-
ization [37]. While power-law decaying couplings may lead to an effective increase in
the system dimensionality and promote the emergence of extended states [37], linear
systems with exponentially decaying couplings are intrinsically unidimensional with
all states remaining localized in the thermodynamic limit. However, the localization
length of the one-particle eigenstates are affected by the typical decay length of the
interactions, thus dictating the quality of the QST on finite chains.

The presence of channel modes displaying larger localization length in some energy
range in the channel spectrummaximizes the chances of establishing an effective reso-
nant Rabi-like interaction between the end points of the chain. This ultimately renders
F ≈ 1 when the hopping strength exponent ν is small enough. We unveiled that aver-
age maximum participation number (working as a measure of localization) scales as
1/ν3 for small values of ν. Therefore, when the localization length becomes signif-
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icantly large, proper tuning of the local sender/receiver energies provides a robust,
high-quality qubit transfer.
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