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Abstract
Westudy a quantum-state transfer protocol between two end spins of a disordered spin-
1/2 chain.We particularly evaluate the performance of the channel when it is subjected
to short-range correlated on-site fluctuations. This is implemented by generating a
random distribution of dimer-like defects across the chain featuring a given on-site
potentialW . By numerically evaluating the system’s natural time evolution, we report
the possibility of carrying out high-fidelity quantum-state transmission from one end
to another given their local frequency is set ε ∼ W and W is within the energy band
of the defectless chain.

Keywords Quantum-state transfer · Anderson localization · Correlated disorder

1 Introduction

The dynamics of a single quantum particle in disordered media has been a very active
field of research, since Anderson‘s seminal paper [1], further culminating in the so-
called phenomenon of Anderson localization, now spanning through a wide range
of areas and backed up by strong technological and theoretical achievements [2].
Basically, the model consists of an electron hopping among nearest-neighbor sites of
a lattice displaying on-site randompotentials, these accounting for the local interaction
between the electron and the atoms in an amorphous material.

In low-dimensional systems (d ≤ 2), all eigenstates become exponentially localized
for anyfinite amount of disorder leading to the absence of diffusion and for d = 3, there
is a metal–insulator phase transition coined as Anderson transition [2–4]. Anderson
localization theory came to have an astonishing impact on, e.g., acoustics [5] light
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propagation [6], photonic bandgap materials [7], cold atoms [8], and many other
physical platforms (see [2] for a review).

Several years ago, it was shown that the Anderson localization theory in low-
dimensional disordered systems can be violated when affected by correlated fluctua-
tions [9–14] (cf. [15,16] for experimental realizations). Very recently, the existence of
a single-particle mobility edge was reported in a 1D optical lattice, originating from a
finite correlation length in the speckle potential [17]). Correlated disorder may thus be
present depending on the experimental setting at hand, or be judisciouly configured
[15], in various forms [18]. One of the precursors of this line of investigation was the
random dimer model put forward in Ref. [10]. The framework consists of a chain with
two uncorrelated random on-site energies εa and εb. It was reported that whenever one
or both of these defects occur in pairs, that is side-by-side, an extended state can be
found within the band of allowed energies [10] . In Ref. [11], it was shown that some
conducting polymers can actually be mapped to a random dimer model. Moreover,
from the experimental point of view, the effect of random dimer correlations in GaAs-
AlGaAs superlattices was investigated in [12]. There it was confirmed that dimer-like
correlations in a disordered semiconductor indeed entails the appearance of extended
states, thus corroborating with previous results [10,11].

The interplay of localization and delocalization in the framework of chains with
correlated disorder also finds appeal in the context of distributed quantum information
processing, as shown recently in [19]. In general, in order to transfer quantum states
and create entanglement between different processing units of a quantum network one
needs to establish reliable quantum communication channels between the nodes [20].
In this context, much attention has been given to spin chains with engineered couplings
that could act as quantum buses for short- and mid-range quantum communication
protocols [19,21–34] (for reviews see, e.g., [35] and [36]) These have the advantage
of a lower degree of external control and dismiss the need of interconverting between
photonic and atomic degrees of freedom [37,38].

A handful of schemes for quantum-state transfer (QST) tasks has been proposed
since the overall concept was put forward in [21]. In [22,39,40] it was shown that
perfect QST is possible in fully engineered chains assuring a linear dispersion law.
The downside of that kind of setting is the requirement to judiciously tuning the entire
chain. In [28,29] an alternative method was proposed which involves optimizing only
the outermost couplings of the chain in order to perform QST in the ballistic regime.
Other configurations are based on energetically detaching the communicating parties
from the rest of the chain so that they span their own subspace. That can be done,
e.g., by applying suitable magnetic fields locally [30,32,41] or linking the sender and
receiver very weakly to the channel [24–26,33,42,43]. These weak-coupling models
offer great resilience against noise and low engineering requirements with the expense
of having long transfer times. Taking δ as the perturbative parameter, the transfer
time scales ∼ O(δ−1) or ∼ O(δ−2) depending on resonance conditions between
the sender/receiver and the channel [25]. Despite that, there is also the possibility
of designing decoherence-free subpaces by weakly coupling two registers through
a noisy channel [44]. Chains with weak end bonds also find use in generating long-
distance entanglement [45,46] and recently have been realized experimentally in a bulk
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material [47] (see also [48] for a study toward implementing it using superconducting
circuits).

In general,whendesigning solid-state devices for transmitting quantum information
one should bear in mind the unavoidable presence of experimental noise, such as static
imperfections coming from the manufacturing process, thermal fluctuations, etc. For
this very reason, the reliability ofmany spin channels against disorder have beenwidely
investigated [19,49–56].Whilemost of schemes are able to hold against small amounts
of it, there is also the prospect of using it to modify, on demand, the performance of the
channel [19,57,58]. In [19], for instance, it was put forward the idea of using spatially
long-range correlated disorder in order to control entanglement distribution patterns
in XY chains.

In this work, we will investigate the possibility of carrying out a QST protocol [21]
across a disordered channel [53] with short-range correlations. For such, we rely on
the weak-coupling spin model [24–26], where both communicating parties are very
weakly connected to each end of the chain. We introduce correlations in the channel
upon randomly generating pairs of on-site defects located right next to each other all
having the same energy. We show that high-fidelity QST can be set to occur when the
energy of the outer spins matches the one associated with the defects, this being in
contrast with the uncorrelated scenario—that is with the channel featuring randomly
distributed single-site defects—where strongly localized states take over the entire
spectrum of the channel thereby spoiling the transmission.

2 Model and formalism

Let us consider a 1D chain with N+2 spins 1/2 interacting through a XY Hamiltonian
of the form (� = 1)

Ĥ =
N+2∑

i=1

ωi

2
(1̂ − σ̂ z

i ) +
N+1∑

i=1

Ji
2

(
σ̂ x
i σ̂ x

i+1 + σ̂
y
i σ̂

y
i+1

)
, (1)

where σ̂
x,y,z
i are Pauli spin operators for the spin located at site i , ωi is the local

potential, and Ji denotes the spin coupling strength.
In the usual QST protocol [21], Alice controls the first spin of the chain and prepares

an arbitrary qubit state |φ〉 = a|0〉+b|1〉 aimed to be sent down the (initially polarized)
channel to be further retrieved by Bob at some other location, here taken to be the
last site of the chain. The state of the whole system is thus initialized in |Ψ (0)〉 =
|φ〉|0〉 . . . |0〉. Given the above Hamiltonian preserves the number of excitations, the
relevant dynamics will only take place on the single-excitation subspace spanned by
| j〉 ≡ σ+

j |∅〉, σ+ being the spin raising operator (state |∅〉 ≡ |0〉 . . . |0〉 is stationary).
Setting ω1 = ωN+2 = ε, J1 = JN+1 = g, and Ji = J elsewhere, we conveniently

rewrite the system’s Hamiltonian as
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Fig. 1 Schematic view of the chain. Both end spins (at sites 1 and N + 2) with local energy ε are weakly
connected to the channel with strength g (dashed lines). The couplings within the channel (solid lines)
are all uniform (J ), but diagonal disorder is present in the form of local a uncorrelated single site or b
correlated dimer-like defects with energy W (filled circles) occurring with probability p. Defect segments
always comprises an even number of sites for dimerized correlations

H = ε(|1〉〈1| + |N + 2〉〈N + 2|) +
N+1∑

j=2

ω j | j〉〈 j |

+ g(|1〉〈2| + |N + 1〉〈N + 2|) + J
N∑

j=2

| j〉〈 j + 1| + H.c. (2)

In summary, both sender and receiver, sites 1 and N + 2, have local tunable energy ε

and are coupled to the bulk through g � J (weak-coupling regime [24]). Herein, we
take J ≡ 1 as the energy unit. Now, diagonal disorder is introduced in the channel in
the following way.We initially setω j = 0, with j = 2, 3, . . . , N+1. For uncorrelated
random defects (Fig. 1a), we attribute to each site a probability p for gaining energy
of strength ω j = W , leaving ω j = 0 otherwise. For correlated dimer-like defects
(Fig. 1b), instead, we set ω j = W and ω j+1 = W with a given probability p and keep
running this coin-flip procedure from the next available site with zero energy, and so
forth, until site N .

The figure of merit of the QST protocol from site 1 to N +2 can be evaluated using
the input-averaged fidelity [21]

F(t) = 1

2
+ fN+2(t)

3
cosϑ + fN+2(t)2

6
, (3)

where fN+2(t) = |〈N + 2|U(t)|1〉| is the absolute value of transition amplitude, with
U(t) ≡ e−i Ht being the quantum time evolution operator, and ϑ is the amplitude
phase, which generally can be ignored by a convenient choice of the of the on-site
potentials.

In weak-coupling models, one can either look for a convenient, end-to-end sym-
metric channel eigenstate to mediate the transmission and place the outer spins in
narrow resonance with it or the transfer may take place via an effective Rabi dynamics
between the outer spins, when they are off-resonantly coupled to the channel [25,33].
Here, we address the latter case as there will be no fixed channel eigenvalues to tune
with due to disorder. In that scenario, it is expected that the dynamics involving spins
1 and N + 2 reduces to that of a two-level system when g is perturbatively small. Ide-
ally, one should get a couple of eigenstates of the form |ψ±〉 	 (|1〉 ± |N + 2〉)/√2
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thus leading to an almost perfect QST in a time that goes ∼ Ω−1, with Ω being the
characteristic Rabi splitting [33].

Indeed, using a a second-order perturbation-theory approach in g, it is possible to
obtain an effective Hamiltonian that accounts for the renormalized coupling between
the outer spins in terms of the normal modes of the channel only—that is, considering
sites 2 through N + 1 in Eq. (1)—, say |Ek〉 = ∑N+1

j=2 a j,k | j〉 with corresponding
energies Ek . It reads (see [25] for details)

Ĥeff =
(
hL Jeff
Jeff hR

)
, (4)

with

hν = ε − g2
∑

k

|aν,k |2
Ek − ε

, (5)

Jeff = −g2
∑

k

(
aL,ka∗

R,k

Ek − ε

)
, (6)

where ν ∈ {L, R}, aL,k ≡ 〈2|Ek〉, and aR,k ≡ 〈N + 1|Ek〉.

3 Results and discussion

Acareful look into Eqs. (4) and (5) tells us that if, eventually, {|Ek〉} contains localized-
like states, their underlying asymmetry entails |aL,k | = |aR,k | and soΔ ≡ hL−hR = 0
(in the absence of particle-hole symmetry), i.e., it induces an effective on-site impurity
in Hamiltonian (4), thereby suppressing the effective Rabi dynamics between sites 1
to N + 2 and thus the transfer fidelity [43]. For strong amounts of (uncorrelated)
disorder, the qubit would remain trapped at the sender’s site. On the other hand, some
correlated noise distributions can breakdown (or suppress) localization in some parts
of the energy band [10,11,13,19]. Therefore tuning ε into those zones may lead to
|Δ/Jeff | � 1, owing to the presence of delocalized-like modes.

We now turn our attention to the localization properties of the channel with short-
range correlated disorder in the form of random dimerized defects having energy W
to check whether and where it holds localization-free zones in the spectrum. This can
be done by evaluating the participation ratio of eigenstates

P(Ek) = 1

N
∑N+1

j=2 |a j,k |4
, (7)

giving P(Ek) = 1/N for a fully localized state and P(Ek) = 1 for an extended state
with equal coefficients, i.e., a j,k = 1/

√
N for every j . For an extended harmonic

Bloch state with a j,k ∼ sin [πk j/(N + 1)] the participation reaches P(Ek) = 2/3.
By carrying out exact numerical diagonalization of Hamiltonian (2) without spins 1
and N + 2, in Fig. 2 we plot the participation ratio against Ek (in units of J ) and
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Fig. 2 Participation ratio of channel’s eigenstates, P(Ek ), versus Ek and p for a uncorrelated random
defects with energyW/J = 1 and (b and c) correlated random dimers withW/J = 1 and 1.5, respectively.
Each P(Ek ) was averaged over 10

2 independent realizations of disorder for N = 500. Note that correlated
disorder allows for extended Bloch-like states around Ek ≈ W with P(Ek ) ≈ 2/3

the local probability p of generating a defect for uncorrelated (Fig. 2a) and corre-
lated (dimerized) disorder (Fig. 2b and c). In the former case, we note that P(Ek) is
small (much less than 2/3) thereby suggesting the occurrence of Anderson localiza-
tion [10,11]. For correlated disorder, shown for W/J = 1 and 1.5 in Fig. 2b and c,
respectively, we check that P/N ≈ 2/3 when Ek ≈ W . The mode with Ek = W is an
extended harmonic Bloch-like state with random phase changes at the dimer defects.
This resonant mode is present whenever the defect energy W is within the band of
allowed energies of the defectless chain (in the present case forW ≤ 2J ). This feature
suggests that a few modes lying around level W remains with an extended profile
despite disorder in finite chains, in agreement with previous works over that class of
defects [10,11]. That is the very ingredient required to achieve an efficient quantum
state transfer.

Given the pair of eigenstates |ψ±〉 of the effective Hamiltonian, Eq. (4), the tran-
sition amplitude reads

fN+2(t) = Λ

∣∣∣∣sin
(

Ωt

2

)∣∣∣∣ , (8)

where Λ ≡ 2|〈N + 2|ψ±〉〈ψ±|1〉| = 2|Jeff |/Ω is the end-to-end correlation ampli-

tude and Ω =
√

Δ2 + 4J 2eff ∼ O(g2). The transition amplitude reaches its maxima,
fN+2(τ ) = Λ, at times τ = nπ/Ω , with n = 1, 3, . . . and fN+2(τ ) 	 1 [and thus
F(τ ) 	 1; see Eq. (3)] only when |Δ| � |Jeff |. Evaluating Λ itself then becomes
a practical way for accessing the capability of the channel to support a high-fidelity
QST protocol.

In Fig. 3, we plot Λ (averaged over several samples) against the sender/receiver
tuning energy ε for many disorder strengthsW for N = 50. For correlated, dimerized
defects (solid curves), whenever ε gets close to W , the end-to-end correlation ampli-
tude reaches about its maxima Λ ≈ 1. This optimal transfer resonance gets incredibly
sharp asW is further increased, which bringsΛ into gradual declining. Nevertheless, it
is rather appealing the fact thatΛ is still very close to 1 for strong amounts of disorder,
say, W = 4J . For uncorrelated random single defects (dotted curves), however, Λ

barely develops over 1/2 already for W = 1. For stronger W , the possibility of QST
is completely ruled out.

Another interesting feature to look after is how sensitiveΛ is to the size of the chan-
nel N . By fixing ε = W (namely, the optimal resonance spot as depicted previously
in Fig. 3), in Fig. 4, we plot Λ against W for numerous sizes ranging from N = 30 to
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Fig. 3 End-to-end correlation amplitude Λ versus the on-site energy ε of spins 1 and N + 2 (sender and
receiver) averaged over 300 independent realizations of disorder for N = 50, p = 0.5, and defect energy
W/J = 1, 2, 4, 6, and 8. Solid (dotted) curves correspond to correlated (uncorrelated) disorder. Data were
obtained directly from Eqs. (5) and (6)

Fig. 4 End-to-end correlation
amplitude Λ versus defect
energy W for fixed ε = W ,
p = 0.5, and several channel
sizes N averaged over 300
independent samples. Data were
obtained directly from Eqs. (6)
and (5). Note that as N increases
past over N ∼ 50, there shall be
no useful QST protocol for
W > 2

N = 100. Based on theΛ outcome and in the light of Eq. (8), for N ∼ 30, QST should
hold fairly well even for strong random (dimer-like) energies W ∼ 10J . This fact,
alone, is very appealing since early experiments in the field involves a smaller number
of sites [59,60]. For longer chains, the end-to-end correlation amplitude remains intact
when W ≤ 2J , which is, still, a reasonable amount of disorder.
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Fig. 5 End-to-end correlation amplitude Λ against defect energy W and g considering the full system,
Hamiltonian (1), and correlated, dimerized disorder for N = 30, fixed ω1 = ωN+2 = ε = W , and
p = 0.5. We evaluated Λ by taking one of the eigenstates closest to energy level W (of the form of |ψ±〉)
and averaging the output over 300 independent samples for each g and W

So far we have been exploring the effective regime accounted by Hamiltonian (4),
with the underlying assumption that g is perturbatively small. Noting in Eq. (8) that
the transfer time scales with the inverse of the effective Rabi splitting Ω , we have
τ ∼ g−2 and therefore long times are generally required to perform that class of QST.
Another constraint we should observe is that larger N and/or W tend to decrease the
output of the sum in Eq. (6), thus decreasing Ω even further.

In Fig. 5, we evaluate the end-to-end correlation amplitude for one of the eigenstates
of the full Hamiltonian, Eq. (1), closest to level W—the one featuring the highest
overlap with spins 1 and N+2—and see how it bevahes upon slowly increasing g and
W in a chain with N = 30 and correlated disorder. Again, we fix ε = W for everyW .
Though Λ loses strength overall due to increasing mixing between the channel and
the outer spins, there is an interesting behavior surrounding W = 2J , after which we
observe a sudden decay of Λ for higher values of g. When W < 2J , the decrease in
Λ occurs in a much slower pace. Curiously, fromW = 0 to 2J , Λ is roughly the same
and thus we note that as long as W lies within the band of allowed energies of the
noiseless system and provided ε = W , in terms of QST fidelity the chain qualitatively
behaves like there is no disorder. This is irrespective of N as we have seen in Fig. 4 for
the perturbative regime (g → 0).We alsowould like to highlight in Fig. 5 thatΛ > 0.9
for W ≤ 2J and moderately small values of g, say 0.1J , what entails high-quality
QST in more feasible timescales.

Last, we address the actual QST fidelity [Eq. (3)] which we evaluate over a fixed
time interval and keep its maximum outcome for each disorder realization, further
averaging them out. Here we follow the exact (non-perturbative) quantum dynamics
of the channel attached to the sender and receiver sites. In Fig. 6, we display Fmax =
max{F(t)} for t J ∈ [0, 2 × 105] against tuning energy ε, averaged over 300 distinct
realizations of correlated disorder, for W/J = 1 and 1.5, now setting an actual value
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Fig. 6 Maximum fidelity Fmax
registered over time interval
t J ∈ [0, 2 × 105] versus the
sender/receiver tuning energy ε

for defect energies W/J = 1
(solid curve) and 1.5 (dotted
curve) in the presence of
correlated dimer-like defects
with p = 0.5. Calculations were
done for g = 0.1J and N = 50
by exact numerical
diagonalization of the full
Hamiltonian, Eq. (2) and
averaged over 300 independent
samples

for g/J = 0.1. Though this is not a perturbatively small parameter, so as to justify
Hamiltonian (4) up to great accuracy, there still remains the overall behavior spotted
in Fig. 3 forW around the same order of magnitude. Furthermore, fidelities outcomes
F > 0.9 can be assured whenever ε ≈ W . Weak-coupling QST schemes [24,25] are
thus shown to be robust against short-range correlated random defects provided the
existence of “localization-free” zones in the spectrum of the channel.

4 Conclusions

In this work we have studied the role of short-range correlated (on-site) disorder—
embodied by random dimer-like defects—in a QST protocol on a XY spin-1/2 chain
featuring weak end bonds.We showed that a high-fidelity transmission can be attained
provided the sender and receiver spins are both tuned to the disorder level ε = W and
that W is within the energy band of the defectless channel (W ≤ 2 J), contrary to the
uncorrelated single-defect case for which no QST should be supported at all when W
is about the order of the channel couplings J .

Remarkably, we found that the protocol remains robust even for substantial values
of W ∼ 10 J for moderate sizes N ∼ 30 while still able to hold against the defects for
much larger sizes provided W ≤ 2 J. High fidelities are also achievable in the non-
perturbative regime, with g ∼ 0.1J, for modest chain sizes. In a way, from W = 0 to
2 J, the outer ends of the chain behaves as if there is no disorder within the channel
once ε = W at all times.

Our approach brings about further perspectives in the design of disorder-proof
channels for quantum communication purposes. Next steps will be taken in optimizing
QST and entanglement distribution protocols [19] over other classes of noise, and also
considering different topologies [61,62].
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