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1. Introduction

Electronic propagation in quasi-crystals or aperiodic systems is a
current theme with several theoretical and experimental investi-
gation.[1–22] Das Sarma was the first to demonstrate that slowly
varying deterministic potentials promote the emergence of
extended states.[13,14] He and his coworkers initially considered
an 1D model in which the potential energy at the site n is pro-
portional to cosðπαnνÞ. In the most famous variant of that
author’s model, πα is a rational number and ν > 0. This param-
eter (ν) characterizes either randomicity or periodicity of on-site
potentials. For 0 < ν < 1, the diagonal potential is aperiodic; for
ν > 1, the on-site terms exhibits a pseudo-random framework.
Upon a wide collection of distinct methods, it was proved that

whenever the diagonal potential is bounded
in a finite region ½�V ,V � with V < 2, the
aperiodic model contains extended states
given the limit of 0 < ν < 1.[13,14]

The results found by Das Sarma et. al.,
i.e., the existence of mobility edges in
1D noncrystalline chains, stimulated other
researchers to understand the role played
by aperiodicity in different domains of sci-
ence. In the recent years, several works
involving aperiodic systems have been pre-
sented. In ref. [15], the problem of many-
body localization (MBL) was experimentally
investigated using ultra-cold atoms in a

weak 1D quasi-periodic potential. By studying the time evolution
of an initial charge density wave, a clear signature of MBL was
found when the corresponding noninteracting model is tuned
within the localized phase. Other system such as a bichromatic
quasi-periodic optical lattice was experimentally investigated in
ref. [16]. The authors found experimental evidence for the exis-
tence of a single-particle mobility edge within this system. In
ref. [17], 1D mutually incommensurate bichromatic lattice sys-
tem was also analyzed. This kind of system can be experimentally
implemented using ultra-cold atoms framework. The authors car-
ried out an extensive investigation of the localization properties of
the 1D incommensurate lattice without making any tight-binding
approximation. They obtained the existence of a localization–
delocalization transition with mobility edges separating localized
from extended states. It is worth mentioning that the kind of
aperiodicity introduced by Das Sarma and co-workers made the
treatment of the limit of strong aperiodicity (ν > 1, also called
pseudo-random limit) and also of the quasi-periodic case (ν < 1)
possible. The case ν ¼ 1 represent the Aubry–André’s limit.
Therefore, the aperiodic source used by Das Sarma represents
a useful numerical scheme that helps on investigation of a wide
range of aperiodicities. In ref. [18], the interplay between non-
Hermiticity from nonreciprocal hopping and the aperiodicity
was investigated. It was studied the topological transition of
non-Hermitian skin effect in nonreciprocal Aubry–André models
and it was obtained the exact phase diagram. The authors also pro-
posed an electrical circuit that was used to demonstrate the tran-
sition properties. In ref. [19], the authors investigated a standard
aperiodic Aubry–André model with power-law hopping (r�a).
For a > 1, the model is characterized by a hierarchy of regimes
with mobility edges. For a ≤ 1, all states remain delocalized.

More recently, the Aubry–André model and its generalizations
as well as the Soukoulis–Economou model were extensively
investigated in ref. [21]. The authors demonstrated that the
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On a square lattice with aperiodic hopping terms, the dynamics of an initially
localized one electron wave-packet is investigated using a Taylor formalism to
solve Schrödinger dynamic equation. The calculations suggest that a fast electron
propagation (ballistic mode) is detected for a range of values of aperiodicity
measure ν. When inserting static electric field effects in the model, the existence
of an oscillatory behavior analogously to electronic dynamics in crystalline
systems is verified (i.e., Bloch oscillations). The frequency and the the size of
these oscillations are analyzed and the results are compared with the standard
semi-classical approach used in crystalline lattices.
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aperiodicity plays relevant role within the context of mobility
edges and also the single-particle intermediate phase. In broad
strokes, the localization aspects within aperiodic systems has
been investigated both theoretically and experimentally. The
main results suggest that the aperiodicity promotes the appear-
ance of extended states hence increasing the conductance.[23]

In this work, we report further progress on the subject of
electronic propagation in systems with aperiodicity. We con-
sider the electron dynamics on a square lattice in which the
hopping terms follow an aperiodic distribution, and the pres-
ence of a static electric field parallel to the lattice. The source
of aperiodicity here is similar to that used by Das Sarma: we
assume a sinusoidal function whose phases are proportional
to a power-law. The power-law exponent controls the degree
of aperiodicity in the lattice. In this system, wave-packet time
evolution is described by the Schrödinger equation; we solved
that using a Taylor formalism. Our calculations suggest that the
system may exhibit a fast electron propagation (ballistic propa-
gation) depending on the degree of aperiodicity. When a static
electric field is inserted, our calculations reveal the existence
of an oscillatory behavior similar to that happen in crystalline
systems(i.e., Bloch oscillations). We also investigated the fre-
quency as well as the size of these oscillations, and compared
our results with the standard semi-classical approach used in
crystalline lattices.

2. Model and Formalism

We consider initially the Hamiltonian of an electronic model
with aperiodic hopping energies tnm,jk on a rectangular N � N
lattice[8,24]

H ¼
X
n,m

ϵn,mjn,mihn,mj

þ
X
him, jki

ðtnm, jkjn,mih j, kjÞ (1)

where jn,mi is a Wannier state localized at site ðn,mÞ andP
hnm, jki represents a sum over nearest-neighbor pairs. In our

calculations, the on-site energy ϵn,m is related to the presence
of a static electric field E ¼ Exx þ Eyy. The potential energy
of the electron interacting with this electric field is given by:
ϵn,m ¼ Exðn� N=2Þ þ Eyðm � N=2Þ (the electron charge e and
the lattice spacing a were considered e ¼ a ¼ 1[8]). To generate
an aperiodic hopping energy topography, we compute the follow-
ing 2D aperiodic function defined as[8,13–17]

ζn,m ¼ W cosðπαnνÞ cosðπαmνÞ (2)

whereW is a constant and πα is a rational number. Here, within
the 2D geometry, W < 4.[8] The exponent ν controls the degree
of aperiodicity within this 2D landscape. The hopping energy
tnm,jk is given by tnm,jk ¼ expð�jζn,m � ζj,kjÞ. We stress that this
exponential transformation generates a bounded interval of
the aperiodic variable without changing its intrinsic incommen-
surate properties—it is a numerical trick deployed to assure ape-
riodicity in the off-diagonal term’s distribution without any
null hopping terms. We emphasize that the choice of this kind

of aperiodicity has a great advantage in comparison with other
aperiodic distribution. The degree of aperiodicity within this
2D sinusoidal function can be tuned by a single parameter ν.
For ν > 1, we are dealing with the pseud-random limit. For
ν < 1, we have a quasi-periodic limit. Therefore, this procedure
allows for generation of various kinds of aperiodic potentials. The
Wannier amplitudes evolve in time according to the time-depen-
dent Schrödinger equation as (ℏ ¼ 1)[8,24]

i
dcn,mðtÞ

dt
¼ ½Exðn� N=2Þ þ Eyðm � N=2Þ�cn,m
þ tnm.nm�1cn,m�1ðtÞ þ tnm.nmþ1cn,mþ1ðtÞ
þ tnm.n�1mcn�1,mðtÞ þ tnm.nþ1mcnþ1,mðtÞ

i,m ¼ 1, 2, : : : ,N

(3)

In the absence of electric field (Ex ¼ Ey ¼ 0), we
considered the electron initially localized at site
n0 ¼ N=2,m0 ¼ N=2, i.e., jΦðt ¼ 0Þi ¼ P

n,m cn,mðt ¼ 0Þjn,mi,
where cn,mðt ¼ 0Þ ¼ δn,n0δm,m0

. For Ex ¼ Ey ¼ E > 0, we
defined the initial state as a Gaussian packet with
cn,mðt ¼ 0Þ ¼ ð1=AÞ expð�Dðn,mÞ2=4Þ, where Dðn,mÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� n0Þ2 þ ðm �m0Þ2

p
and A is a normalization constant.

The aforementioned set of equations were solved numerically
by using a high-order method based on the Taylor expan-
sion of the evolution operator VðΔtÞ ¼ expð�iHΔtÞ ¼
1þPzo

l¼1½ð�iHΔtÞl�=l!, where H is the Hamiltonian. The
wave-function at time Δt is given by jΦðΔtÞi ¼
VðΔtÞjΦðt ¼ 0Þi. The method can be used recursively to obtain
the wave-function at time t. To getHljΦðt ¼ 0Þi, we used a recur-
sive formula derived as follows. Let HljΦðt ¼ 0Þi ¼P

nm Cl
n,mjn,mi. Using the Hamiltonian formula (Equation (1)),

we compute H1jΦðt ¼ 0Þi and obtain C1
n,m as

C1
n,m ¼ ½Exðn� N=2Þ þ Eyðm � N=2Þ�cn,mðt ¼ 0Þ

þ tnm.nm�1cn,m�1ðt ¼ 0Þ þ tnm.nmþ1cn,mþ1ðt ¼ 0Þ
þ tnm.n�1mcn�1,mðt ¼ 0Þ þ tnm.nþ1mcnþ1,mðt ¼ 0Þ

(4)

Therefore, using that HljΦðt ¼ 0Þi ¼ H
P

nm Cl�1
n,mjn,mi, Cl

n,m

can be obtained recursively as

Cl
n,m ¼ ½Exðn� N=2Þ þ Eyðm � N=2Þ�Cl�1

n,m

þ tnm.nm�1Cl�1
n,m�1 þ tnm.nmþ1Cl�1

n,mþ1

þ tnm.n�1mCl�1
n�1,m þ tnm.nþ1mCl�1

nþ1,m

(5)

The results without electric field can be taken adopting
Δt ¼ 0.08 and the sum was truncated at zo ¼ 10. This cutoff
was sufficient to keep the wave-function norm conservation
along the entire time interval considered. In the case considering
electric field, we have used Δt ¼ 0.01 and z0 ¼ 12. This formal-
ism is faster than high-order Runge Kutta methods and it is eas-
ier to implement. We are particularly interested in calculating the
electronic mean position defined as

RðtÞ ¼ 1ffiffiffi
2

p ðx þ yÞ ⋅ ðhni ðtÞx þ hmi ðtÞyÞ (6)
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where hniðtÞ ¼ PN
n¼1

PN
m¼1 njcn,mðtÞj2 and hmiðtÞ ¼PN

n¼1

PN
m¼1 mjcn,mðtÞj2. We also computed wave packet mean-

square displacement σðtÞ defined by[24]

σðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
n¼1

XN
m¼1

½ðn� n0Þ2 þ ðm �m0Þ2�jcn,mðtÞj2
vuut (7)

Note that σðtÞ varies from 0, for a wave function confined to a
single site, to N, for a wave uniformly extended over the whole
chain.[8,24,26]

3. Results

Our first analysis is carried in the case of a N � N lattice with
N ¼ 3000, W ¼ 3 and without electric field, i.e., Ex ¼ Ey ¼ 0.
Because of the system size, we did not solve the set of equations
for all sites, only for a finite fraction of the lattice around the cen-
ter of chain (n0 ¼ N=2 and m0 ¼ N=2). This subdivision started
with size N0 � N0 (with N0 ¼ 100) centered around the site
(n0,m0). Whenever the wave-packet arrived at the borders of this
small region, we expanded N0 to avoid boundary effects. This
artifice speeds up the calculations and also removes the possibil-
ity of border reflections. In Figure 1a, we plot our results for the
mean square displacement σ versus t for Ex ¼ Ey ¼ 0, πα ¼ 0.5,
and ν ¼ 0.5, 0.75, 1.5, 2. The results showed in Figure 1a indi-
cated that, for ν < 1, the wave-function spread increased roughly
linearly with time (i.e., σðtÞ ∝ t1). It is a clear signature that exists
extended states at this limit. In contrast, computation for ν > 1
showed that the time evolution of wave-function’s width exhib-
ited a slower dynamic pointing at the absence of extended states
at this limit. To analyze the localization–delocalization transition
within this model, we watch the long-time behavior of σ as the ν
exponent is tuned. In broad strokes, for long times, the mean
square displacement behaves as σ ∝ tβ, where the exponent β
depends on ν. To obtain the dependence of β with ν, we run sev-
eral numerical simulations considering ν within the range
½0.1, 1.5�. We also considered several values for the parameter
πα (πα ¼ 0.2 up to 2.0). Figure 1b contains the average curve
β � ν obtained using all calculations. The exponent β was

computed through a power-law fitting at the long-time limit.
The results showed in Figure 1b indeed confirm that for
ν < 1 the dynamics is ballistics (i.e., the systems contains
extended states). However, within our accuracy, the critical points
separating extended from localized states is slightly smaller than
ν ¼ 1. Based on Figure 1b, we notice that only for ν < 0.8 the
dynamics seems to be really ballistics. For ν ¼ 0.8, the long-time
behavior of σ was characterized by an exponent β ¼ 0.97ð2Þ. For
ν ¼ 0.9, we obtained β ¼ 0.94ð2Þ and for ν ¼ 1, β ¼ 0.84ð2Þ.
Therefore, for 0.8 ≤ ν ≤ 1, the dynamics seems to be super-
diffusive with exponents between ½0.84, 0.97�. We stress that
within the 1D case studied by Das Sarma and co-workers, the crit-
ical point separating extended from localized states was ν ¼ 1.
Within the framework of 2D models with nonperiodic hopping
terms this general trend seems to be also roughly found; however,
the critical point is slightly smaller than ν ¼ 1. In general, for
ν < 1, we found a fast electronic dynamics; however, only for
ν < 0.8, we indeed found a really ballistic propagation.

We will consider now the effect of a static electric field parallel
to the aperiodic lattice (i.e., E ¼ Exx þ Eyy) with Ex ¼ Ey ¼ E.
We emphasize that at the presence of electric field, the wave-
packet remains trapped around the initial position. Therefore,
it is not necessary to consider big systems. Within the cases with
electric field, we considered a N � N lattice with N ¼ 300,
πα ¼ 0.5, andW ¼ 3. The Taylor formalism was considered with
Δt ¼ 0.01 and z0 ¼ 12. All calculations with nonzero electric
field were carried for times up to tmax ¼ 2000. For the improve-
ment of system dynamics visualization, we plot the data for short
times (t � 100). In Figure 2 and 3, we plot a summary of our
main calculations considering E ¼ 0.5 (Figure 2) and E ¼ 0.7
(Figure 3). In Figure 2 and 3a,b, we plot the electronic mean
position versus time for E ¼ 0.5 and 0.7 considering ν ¼ 0.5
and 1.5. For ν ¼ 0.5, we could see that for both values of E,
the electronic wave-packet exhibit a coherent oscillatory motion
with a single frequency. For ν ¼ 1.5, we observed a complete
absence of a coherent dynamics. The oscillatory dynamics found
in Figure 2 and 3 for ν ¼ 0.5 is similar to the “Bloch oscilla-
tions”,[8,27] originally defined within the framework of crystalline
lattices. Using a semi-classical formalism,[8,27] it was easy to
prove that, in a crystalline system (i.e., disorder free), an uniform
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Figure 1. a) Mean square displacement σ versus t for Ex ¼ Ey ¼ 0 and ν ¼ 0.5, 0.75, 1.5, 2. Our results indicate that for ν < 1 the wave-function exhibits
roughly a ballistic spread (i.e., σðtÞ ∝ tβ with β � 1). b) The exponent β versus ν considering ν within the range ½0.1, 1.5�. Calculations of β were averaged
using πα ¼ 0.2 up to 2.0.
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electric field E causes dynamic localization of the wave-packet.
Moreover, the interaction with the electric field also gives rise
to an oscillatory motion called Bloch oscillations.[8] The semi-
classical procedure also provides the frequency (ωE ) of the elec-
tronic oscillations as well as the size (LE ) of the segment over
which the electron keep its dynamics: ωE ¼ E and LE ∝ 1=E
(we are considering units in which that e ¼ ℏ ¼ a ¼ 1). We cal-
culated the oscillation frequency using fast Fourier transform of
the function RðtÞ. Our results of RðωÞ versus ω for E ¼ 0.5, 0.7
and ν ¼ 0.5 and 1.5 are found in Figure 2 and 3c,d. We noted
that, for ν ¼ 0.5, the Fourier transform revealed a well-defined
single peak around ω ¼ E (congruent with the semi-classical
predictions). For ν ¼ 1.5, we found a wide Fourier spectrum,
thus indicating the total absence of a coherent Bloch oscillation.
Therefore, for 0 < ν < 1, our results indeed suggested that the
electric field promotes the appearance of “Bloch-like oscillations”
with frequency in excellent agreement with the semi-classical
predictions.

We analyzed other aspects related to the oscillatory behavior
found in Figure 2 and 3 and its comparisons with the semi-
classical predictions. In Figure 4a, we plot RðtÞ versus t for
ν ¼ 0.5, πα ¼ 0.5, and E ¼ 0.2,0.4,0.6 and 0.8. We observed
clearly that the amplitude of the oscillatory behavior decreases
as the electric field intensity is increased. This results seemed
to be in consonance with the semi-classical results. To make a
direct comparisons, we estimated the size LE for several values
of electric field E (see Figure 4b). To estimate LE , we considered
that hniðtÞ and hmiðtÞ are roughly identical and, therefore, the size

LE can be obtained as LE � ð ffiffiffi
2

p
=2ÞRmax, where Rmax is the maxi-

mum value of RðtÞ. The plot of LE versus 1=E is found in
Figure 4b. We could see indeed LE ∝ 1=E (again, in good agree-
ment with the semi-classical predictions). We stress that, by apply-
ing a semi-classical approach to standard Bloch system, the size LE
should be given by LE ¼ B=E, where B is the width of the Bloch
band. However, our model is not a Bloch system and the ”Bloch
band” is not well defined here. In ref. [27], they considered a
generalized approximate relation LE ¼ B*=E, where B* was the
width of the band of extended states. Therefore, roughly, the linear
fitting of the data showed in Figure 4b, provided the width of
the band of extended states that exists within our model. Using
a linear fitting LE ¼ B*ð1=EÞ þ a, we obtain B* � 3. However,
we stress that it is not a precise estimation of the width of extended
state’s band because both the numerical estimation of LE and
equation LE � B*=E contains approximations. However, despite
the approximations related to the size of band, our calculations
indeed suggested the existence of a band of extended states in
2D systems with weak aperiodicity (ν < 0.8).

4. Conclusion

In summary, we analyzed the electronic propagation in sys-
tems with aperiodicity under effect of a static electric field.
Considering electron dynamics on a square lattice with hopping
terms distributed aperiodically, we investigated the time evolu-
tion of an initially localized wave-packet by using a Taylor
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Figure 2. a,b) Electronic mean position RðtÞ versus time for electric field Ex ¼ Ey ¼ E ¼ 0.5 and considering ν ¼ 0.5 and 1.5. c,d) The Fourier transform
RðωÞ versus ω for the cases shown in (a,b).
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formalism to solve the Schrödinger equation. Our results suggest
that the system may exhibit a fast electron propagation (ballistic
propagation) depending on the degree of aperiodicity. After
introducing a static electric field to the system, our calculations
revealed the existence of an oscillatory behavior which is similar
to the Bloch oscillations. Also, we calculated the oscillation’s fre-
quency and the size of region in which the wave-packet remains
trapped. Our results are in good agreement with the standard
semi-classical approach.
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