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1. Introduction

The presence of a static electric field acting on a periodic lattice
promotes the dynamic localization of a given wave packet.
Furthermore, the localized wave packet exhibits an oscillatory
behavior called “Bloch oscillations” (BO).[1,2] The period of these
oscillations is inversely proportional to the magnitude of the static
electric field. In the recent literature, it is possible to find a wide
collection of works in which it is possible to “visualize” BO in sev-
eral kinds of systems.[3–16] The first real direct observation of BO
was done in semiconductor superlattices.[12] Following this discov-
ery, other Bloch-like phenomena were detected inmatter waves,[13]

acoustic waves,[14] optical systems,[15] and also in plasmonic

waveguide arrays.[16] Recently, the problem
of many-body quantum dynamics in optical
lattices was experimentally investigated.[17]

The authors have used an amazing experi-
mental framework to access to essential
features of many-body systems (such as
particle–particle interaction, electric field
effects; by the way, disorder can also be
included within this setup). They experi-
mentally demonstrate the dependence of
the frequency of BO with the intensity of
the particle–particle interaction. In general,
Preiss et al.[17] confirmed the theoretical
prediction of frequency doubling of BO[18]

due to electron–electron Coulomb interac-
tion. In a theoretical overview, some attention was driven to the
possible existence of BO in disordered systems[19,20] with intrinsic
correlations in the disorder distribution. These results indicate
that, at the limit of strong correlations, these systems may exhibit
BO even at the complete absence of internal periodicity.

In this work, we provide further progress along those lines.
We investigate the electronic dynamics in a chain with correlated
disorder under the influence of a static electric field E. In the
current model, the diagonal disorder is constructed using an
Ornstein–Uhlenbeck (OU) process. This stochastic process
describes the dynamics of a Brownian motion under the influ-
ence of friction.[21,22] In general, the OU process is a random
series in which the power spectrum displays a Lorentzian
shape.[21,22] The presence of disorder distributions based on
the OU process was investigated in classical transmission lines
(TL)[23] and also in classical harmonic chains.[24] Within the
framework of TL systems, it was shown that the OU disorder
can promote the appearance of a transition from nonconducting
to conducting states.[23] However, calculations in 1d classical
harmonic chains with the mass distribution constructed from
an OU process indicate that only the zero-frequency mode can
propagate through the chain.[24] In our work, we will use the
OU process to introduce correlations within the on-site electronic
potential. We will solve the Schrödinger equation considering an
initial Gaussian wave packet with width l located at the center of
chain. To understand the competition between the OU-like dis-
order and the electric field, we monitor the mean electronic posi-
tion along the time. Our results suggest that chains with diagonal
disorder generated from OU process with small viscosity coeffi-
cient seem to exhibit apparent BO with frequency roughly ω� E.
We analyze the survival of this apparent BO by comparing the
localization length of eigenstates with the size of region in which
the wave packet remains trapped.
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Herein, the electronic dynamics in a 1Dmodel with correlated disorder and under
the influence of a static electric field is considered. In the framework, the diagonal
disorder is obtained from an Ornstein–Uhlenbeck (OU) process. The Schrödinger
equation considering an initial Gaussian wave packet with width l located at the
center of chain will be solved. To understand the competition between the
OU-like disorder and the electric field, the time evolution of the electronic mean
position is calculated. The results suggest that chains with diagonal disorder
generated from OU process with small viscosity coefficient seem to exhibit
apparent Bloch oscillations (BO) with dominant frequency roughly ω� E.
In addition, the stability of these apparent BO along the time is investigated.
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2. Model and Formalism

We consider the problem of a one-electron moving on a disor-
dered chain under the influence of a static electric field. The elec-
tronic Hamiltonian in our model is given by[19,20]

H ¼
XN

n¼1

½ϵn þ Eðn� N=2Þ�jnihnj þ
XN

n¼1

ðjnihnþ 1j þ jnihn� 1jÞ

(1)

where ϵn is the on-site energy, E represents the electric field
acting parallel to the chain, and Eðn� N=2Þ is the energy inter-
action between an electron with charge e ¼ 1 and the electric
field E (take the lattice spacing as a ¼ 1). The term jni is a
Wannier state at the nth site. If electronic wave function at
time t was jψðtÞi ¼ P

n f nðtÞjni, then we write the time-
dependent Schrödinger equation as ðℏ ¼ 1Þ

½ϵn þ Eðn� N=2Þ�f n þ f nþ1 þ f n�1 ¼ i
df n
dt

(2)

In our study, the diagonal disorder distribution is obtained
from an OU process. This stochastic process is defined from
the following stochastic differential equation[21–26]

dz
dt

¼ �γzðtÞ þ
ffiffiffiffi
D

p
λðtÞ (3)

succinctly, where γ represents the system viscosity, D is the dif-
fusion coefficient, and finally λðtÞ is known as the stochastic
term.[23,25] The quantity λðtÞ is termed as a white Gaussian noise
produced by the Box–Muller method such that hλðtÞi ¼ 0 and
hλðtÞλðtþ τÞi ¼ δðτÞ. It is possible to show that hzðtÞi ¼ z0e�γt

and hzðtÞzðtþ τÞi ¼ ðD=2γÞe�γτ.[26] A discrete form of
Equation (3) is constructed based on the study by Gillespie.[26]

Then, zðtÞ is reduced to zm, where m expresses the number
of time increments ðt ¼ mΔtÞ. Using this discrete variable,
we get another version of Equation (3)

zmþ1 ¼ μzm þ σmαm (4)

where μ is written in the form

μ ¼ e�γΔt (5)

and that σ is a function of the process-specific parameters OU
(γ and D)

σm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D
2γ

�
ð1� μ2Þ

s

(6)

We emphasize that αm is a white Gaussian noise obtained by a
Box–Muller algorithm.[23,25] In our calculations, we consider
D ¼ γ2.[23,25] We start Equation (4) with a random seed z0 and
therefore generate all values z1, z2, : : : ., zN . After the set of val-
ues of fzmg be generated, we performed a normalization done
on this set {zm} in order to construct the on-site energy terms.
We initially calculate the normalized sequence of fzmg values,
i.e., fz̃mg defined by z̃m ¼ ðzm � hzmiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2mi � hzmi2

p
. The

on-site energies ϵn will be defined as ϵn ¼ z̃m with n ¼ ≡m.
We emphasize that there are a wide range of techniques that

can construct disordered sequences with internal correlations.
Some of them use a Fourier-transform formalism (like in
ref. [19]). The kind of formalism used in the study by
Domínguez-Adame et al.[19] does not contain disorder in the
amplitudes of the Fourier decomposition; the source of disorder
is, in general, introduced at the phases of the Fourier formalism.
The OU stochastic process can generate correlated disorder with-
out the Fourier formalism. Therefore, this is a key difference
between the OU disorder and the disorder distribution consid-
ered in the study by Domínguez-Adame et al.[19] If we calculate
the Fourier transform of the OU series, we will find disorder in
both amplitudes and phases of the Fourier decomposition.
Moreover, we need to point out again that the correlation func-
tion here is roughly an exponential with correlation length of
about 1=γ. Therefore, the disorder distribution here exhibits a
typical finite correlation length. The disorder distribution
obtained via Fourier formalism[19] does not contain a typical
finite correlation length due to its power law spectrum.

Our calculations are done by numerical solution of
Equation (2). These differential equations were solved using a
high-order Taylor expansion of the evolution operator[25,27]

(a)

(b)

Figure 1. a) Electronic mean position 〈x(t)〉 versus time t and b) its Fourier
transform for E¼ 0.5 and γ¼ 1 and 5. The electron remains localized
around the initial position and the Fourier spectrum does not exhibit a
single-frequency profile.
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UðΔtÞ ¼ expð�iHΔtÞ ¼ 1þ
XR0

l¼1

ð�iHΔtÞl
l!

(7)

where H represents the Hamiltonian of the system. The elec-
tronic state at time Δt is obtained from the initial state as
jψðΔtÞi ¼ UðΔtÞjψðt ¼ 0Þi. We can apply the evolution operator
successively to find the electronic wave function at time t. This
formalism is faster and is more accurate than, for example,
fourth-order Runge–Kutta formalism. In our calculations, we
use R0 ¼ 12 and Δt ¼ 0.01. To characterize the electronic
dynamics, we calculate the electronic position along the time, i.e.

hxðtÞi ¼
X

n

nj f nðtÞj2 (8)

The electronic position gives useful information about the
general electronic dynamics under the influence of correlated
disorder and electric field.

3. Results

We performed calculations in a chain with N ¼ 800 sites
immersed in a static electric field value E. It is worth mentioning

that we are using units such that e ¼ a ¼ ℏ ¼ 1 and the terms ϵn
and Eðn� N=2Þ are in units of the electronic hopping. In our cal-
culations, the electron was initially set in a Gaussian state, i.e.,
jψðt ¼ 0Þi ¼ P

n f nðt ¼ 0Þjni with f nðt ¼ 0Þ ¼ Ae½�ðn�N=2Þ2=4�

and A being a normalization constant. In Figure 1a,b, we plot
results for γ ¼ 1 and 5 and E ¼ 0.5. In case Figure 1a, we plot
the electronic position versus time and in Figure 1b, we plot its
Fourier transform. According to the figure, the electron remains
dynamically localized around the initial position. Moreover,
the Fourier spectrum exhibits a broadening range of frequencies,
thus indicating an incoherent dynamics (in good agreement
with the dynamics profile shown in Figure 1a). We stress that
for γ ≫ 1, the on-site disorder does not contain correlations; it
behaves roughly as a uncorrelated disorder similar to the kind
of disorder previously used in the standard Anderson model.
Therefore, the electron also remains localized even in the absence
of electric field. By decreasing the value of γ, our results change
drastically. In Figure 2, 3, and 4, we show our calculations for
γ ¼ 0.001 and 0.0001 with E ¼ 0.5, 0.7, and 0.9. Figure 2a, 3a,
and 4a show an apparent coherent electronic dynamics around
the initial position. We observe that the wave packet remains
trapped in a region with size L0; L0 is the mean size of region
in which the electron keeps its oscillatory dynamics. By observing
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Figure 2. a) Electronic mean position 〈x(t)〉 versus time t and b) its Fourier
transform for E¼ 0.5 and γ¼ 0.001 and 0.0001.
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Figure 3. a) Electronic mean position 〈x(t)〉 versus time t and b) its Fourier
transform for E¼ 0.7 and γ¼ 0.001 and 0.0001.
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Figure 2a, 3a, and 4a, we can see the vertical dashed line illustrat-
ing the quantity L0. We emphasize that L0 is obtained by calcula-
tion of the dispersion of the electronic position hxðtÞi along the
time; our calculations indicate that the value of L0 for these cases
is approximately L0 ¼ 6.

The Fourier transform (Figure 2b, 3b, and 4b) showed a single
peak around the ω � E and thus in good agreement with the
coherent electronic dynamics shown in Figure 2a, 3a, and 4a.
The single narrow peak around ω � E suggests that the results
found are, indeed, apparent BO[3–11] with frequency roughly
equal to the frequency predicted by the semiclassical formal-
ism.[28,29] In Figure 5a,b, we show our results for γ ¼ 0.00001
and E ¼ 0.5,0.7, and 0.9. Based on Figure 5a,b, we note that
the electron remains trapped around the initial position and
exhibits an oscillatory behavior with frequency roughly ω¼ E.
We did a lot of calculations for several values of E and γ, and
analyzed the Fourier transform of the electronic position. To
detect the existence of a single frequency at the oscillatory elec-
tronic dynamics, we found the width Lω of the Fourier spectrum.
If Lω ≫ 0, we are dealing with a Fourier transform with several
frequencies within the electronic dynamics; therefore, we have
an incoherent oscillatory behavior. However, if Lω ¼ 0, the
Fourier spectrum contains a single frequency and, therefore,
the oscillatory behavior should be coherent. In Figure 6, we plot
the width Lω of the Fourier spectrum versus the correlation
degree γ. We plot our calculations for E ¼ 0.5, 0.7, and 0.9 in

the plane ðLω, logðγÞÞ. For γ > 1, the Fourier spectrum is strongly
wide, thus indicating the complete absence of Bloch-like oscilla-
tions. For γ < 1, the width of Fourier spectrum decreases, thus
pointing to the existence of a single-frequency dynamics.
However, the complete vanishing of the width Lω is not obtained
within the range of values of γ used here. Within our numerical
tolerance, the values of Lω seem to saturate for γ < 0.001 in a
value Lω ¼ 0.04ð2Þ. We think that, in our numerical precision,
this extremely narrow Fourier spectrum indicates the presence
of apparent Bloch-like oscillations with a single frequency
(ω � E). In Figure 7, we illustrate the effect of the OU correlated
disorder and the static electric field on the electronic dynamics.
We plot the square modulus of the electronic wave function
ðj f nj2Þ versus time t and n with E ¼ 0.5, γ ¼ 0.0001, and γ ¼ 1.
We clearly observe the Bloch-like oscillations for γ ¼ 0.0001. The
coherent oscillatory patterns with frequency ω ¼ 0.5 are shown
in Figure 7a. Moreover, for γ ¼ 1 (Figure 7b), there is possible
to note the localization dynamics of the electronic wave packet
with no coherent profile. Therefore, our results indicate that,
for γ < 0.001, this model exhibits Bloch-like oscillations with
frequency ω � E.

Before concluding this work, we need to write some words
on the stability of these oscillations along the time. The OU-like
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Figure 4. a) Electronic mean position 〈x(t)〉 versus time t and b) its Fourier
transform for E¼ 0.9 and γ¼ 0.001 and 0.0001.
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Figure 5. a) Electronic mean position 〈x(t)〉 versus time t for γ¼ 0.00001
and E¼ 0.5, 0.7, 0.9; b) the Fourier transform of part (a).
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disorder contains a power spectrum fitting a Lorentzian profile;
the autocorrelation functions exhibit an exponential decay. The
correlations’ length is proportional to 1=γ. Therefore, formally,
the disorder displays short-range correlations. However, at the
presence of static electric field, the size of regions in which
the electron remains trapped is extremely smaller than 1=γ at
the limit of small viscosity. Therefore, the oscillatory behavior
may hold for intermediate time span (the time limit in our
numerical calculations was about 105). Moreover, at the thermo-
dynamic limit, there is no extended states within this model.[24]

For γ close to zero, the states around the band center are weakly
localized (not fully extended), so the oscillatory behavior
might not be sustained indefinitely. To understand the nature
of eigenstates better, we solve the problem with no electric field
ðE ¼ 0Þ calculating the scaled participation number defined as
ξ=N ¼ ð1=NÞ½Pn Y

4
n��1, where Yn are the components of the

eigenstate jψi (i.e., jψi ¼ P
n Ynjni).

Computation were done for N ¼ 800 up to 6400, γ ¼ 0.0001,
and E ¼ 0. In Figure 8, we plot the scaled participation number
versus the electronic energy Ec. We see that ξ=N decreases as the
system size N is increased. It is a clear signature of localized
states. However, for eigenstates with energy Ec close to zero,
the localization length seems large (it is roughly about N=3).
Therefore, these states around the band center remain weakly
localized and promote the appearance of this oscillatory behavior
for intermediate time span. These states around Ec¼ 0 have a
localization length larger than the region in which the electron
remains trapped and oscillating. Analyzing Figure 2 and 3,
we note that the electron oscillates in a region with size
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Figure 6. The width Lω of the Fourier spectrum versus the logarithm
of correlation degree logðγÞ for a) E ¼ 0.5, b) E¼ 0.7, and c) E¼ 0.9.
Our calculations suggest that, for γ < 0.001, Lω saturates in a small value
(about Lω ¼ 0.04ð2ÞÞ, thus pointing to the presence of apparent Bloch-like
oscillations with a single frequency ðω ¼ EÞ.
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Figure 7. The square modulus of the electronic wave function ðj f nj2Þ
versus time t and n considering E ¼ 0.5, a) γ ¼ 0.0001 and b) γ ¼ 1.
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up to 6400 with γ ¼ 0.0001 and in the absence of electric field (E¼ 0).
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L0 < 10 sites. However, it is shown in Figure 8 that the cases with
size N ¼ 800 (same size as in Figure 2 and 3) have some eigen-
states with localization length ξ over 100 sites. Therefore, the dif-
ference between the localization length (over 100 sites) and the
size of region in which the electron wave packet remains trapped
(L0 < 10 sites) is the key issue behind the apparent oscillatory
dynamics found.

4. Conclusion

We studied the electronic dynamics in a 1D model with corre-
lated disorder and under the influence of a static electric field.
Here, the diagonal disorder was obtained from an OU process.
We solved the Schrödinger equation using a Taylor expansion of
the evolution operator. The initial condition was a Gaussian wave
packet with width l located at the center of chain. We calculated
the mean electronic position along the time. Our results suggest
if the diagonal disorder distribution was generated from an OU
process with small viscosity coefficient, then the electronic
dynamics seem to exhibit apparent BO with frequency roughly
equal to the magnitude of the electric field. However, due to the
absence of real extended states within this model, it is possible
that this oscillatory behavior could not be kept indefinite. For 1=γ
larger than the size of the region in which the electron wave
packet remains trapped, this Bloch-like oscillation may survive
for intermediate times (the maximum time used here was about
105). From the experimental point of view, we think that these
results could be observed in appropriately designed random
microwave waveguides[30,31] or optical lattices.[17,32]
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