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Wave-Packet Dynamics in Nonlinear Disordered Chains
under the Effect of Acoustic Waves
Messias de Oliveira Sales, Adhemar Ranciaro Neto, and
Francisco Anacleto Barros Fidelis de Moura*
In this work, the wave-packet dynamics is considered under the effect of
diagonal disorder distribution, electron–lattice interaction, and acoustic-wave
pumping. Electronic transport is taken into account quantum mechanically,
whereas lattice vibrations are described through a classical nonlinear Morse
Hamiltonian. The electronic hopping term takes the form of an exponential
function of the effective distance between nearest-neighbor lattice elements. The
electron wave-packet is initially localized at the first site of the chain alongside a
Gaussian pulse generator. The results suggest that the disorder distribution
breaks down the solitonic energy profile that exists within this kind of nonlinear
Morse lattice. On the other hand, it is shown that the acoustic pumping
sustains the wave packet dynamics within this disordered nonlinear model.
1. Introduction

The interaction between electronicwave packets and surface acoustic
waves (SAW) in low-dimensional systems has attracted a substantial
amount of interest, covering awide range of subjects.[1–15] In ref. [3], a
two-dimensional electron model in low temperatures was investi-
gated on GaAs=Ga1�xAlAs hetero-junctions under effect of strong
magnetic fields and SAW. There it was observed that the interaction
between SAWand the electron gas yields rich physics. Moreover, at
highSAWintensities,adirectdependenceof theelectronconductivity
upon theSAWpropagationwas shown.Further experimental studies
on this subject were also carried out addressing, e.g., the electronic
flux mediated by SAW in GaAs�AlGaAs heterostructures[5,6] and
showing evidence of charge transport of electrons and holes at room
temperature in an InGaAs/GaAs hetero-structure.[7] In a recent,
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interesting experiment reported in ref. [8], the
authors managed to push an electronic wave-
packet troughawire.Asa result, itwaspointed
out the possibility of using that kind of
behaviortomove, forexample,aqubitbetween
two distant places.[8] In summary, the elec-
tronic wave packet was trapped in a quantum
dot andSAWwereultimately used to push the
electron along the channel. In ref. [13], the
authors demonstrated experimentally the
possibility of manipulation of the charge
carrier injection into self-assembled quantum
dots (QD) and quantum posts (QP) by using
SAW propagation, thereby paving the way for
manyapplicationswithinthiscontext.Another
interesting work was carried out in ref. [14],
where SAW were applied in order to control
carrier injection into a single InGaAs/GaAs quantum dot.
The interaction between electronic dynamics and lattice

vibrations possess a key role in charge transport in low-
dimensional systems. In ref. [16] the authors lattice deforma-
tions in Polyacetylene, including the energy of formation, length,
mass, and activation energy for motion. They demonstrated that
these lattice deformations play a fundamental role in the charge-
transfer mechanism of Polyacetylene.[16] In the framework of
electronic transport mediated by electron–lattice interaction, we
must highlight Davydov’s contribution.[17–24] He was one of the
first scientists who proposed the idea that the electron–lattice
nonlinear term promotes charge transport. Davydov’s theory
basically follows the assumption of a nonlinear interaction
between a linear electronic model and a linear lattice dynamically
described by a soliton-bearing equation. Other interesting works
can be found in refs. [25–38]. M.G. Velarde and co-workers
demonstrated the existence of a polaron-soliton “quasi-particle”
in nonlinear lattices and also proposed the possibility of use this
phenomenology in order to increase charge transport.

In this work we analyze the electronic propagation under the
effect of nonlinearity, disorder and of an external acoustic wave.
Nonlinearity is taken into account through the standard Morse–
Toda interaction.[38]We emphasize thatmodels featuring all those
elements mentioned above are absent in the literature.[33,15] We
defineaquantumHamiltonian tomodelelectronic transport anda
classical nonlinear Hamiltonian that accounts for the lattice
vibrations. By assumption, the electron–lattice interaction varies
exponentially with the effective distance between neighboring
atoms. We obtain the dynamics which rises from an initial wave
packet localized at the far left side of the chain andGaussian pulse
created at the same side. Our results show that the disorder
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distribution destroys the solitonic energy profile that is expected in
this class of nonlinear Morse lattice. Also, the acoustic wave
pumping associated to the electron–lattice interaction generates
wave-packet dynamics even at the presence of intense disorder.
2. Model

Weconsidera single electronmoving ina1Dnonlinear latticewith
Nmasses.TheelectronicHamiltonianHecanbedefinedasref. [38]

He ¼
X
n

ϵnZ†
nZn þ

X
n

Vnþ1;n Z†
nþ1Zn

� � ð1Þ

where Z†
n and Zn are the creation and annihilation operators for

the electron at site n, ϵn represents the on-site disorder
distribution � uniformly chosen within the interval [�W/2,
W/2]�, and Vnþ1;n is the energy transfer between the nearest
sites. The nonlinear lattice is primarily defined by taking into
account the nearest-neighbor sites coupled by the Morse
Potential. The classical Hamiltonian Hlattice is given by

Hlattice ¼
X
n

p2n
2Mn

þ Y1 1� exp �Y2 qn � qn�1

� �� �� �
2 ð2Þ

where pn and qn are the momentum and displacement of the
mass at site ðnÞ, respectively. Y1 is typical bond energy and Y2 is
the range parameter of the Morse potential.[38] We consider Mn

to follow disorder distribution generated upon the following
procedure:Mn ¼ e Πnð Þ, with Πn, are random numbers uniformly
distributed within the interval [�W/2,W/2]. Constants Y1 and Y2

were defined as in ref. [38]: qn ! Y2qn, pn ! pn=
ffiffiffiffiffiffiffiffi
2Y1

p
, and

Hlattice ! Hlattice= 2Y1ð Þ.
The electron–lattice interaction in the model above depends on

the coefficients of electronic states and displacements of
molecular masses from their equilibrium positions. The hopping
elements Vnþ1;n are functions of the relative distance between
two consecutive molecules in the chain following
Vnþ1;n ¼ �V⁢ exp �α qnþ1 � qn

� �� �
. The parameter α represents

the degree of relative displacement of the lattice in units of the
hopping term, Vnþ1;n. In other words, it determines the electron-
lattice coupling strength (in units of 1=Y2). For a small relative
displacement we recover the Su-Schrieffer-Heeger approximation,
Vnþ1;n � �V 1� α qnþ1 � qn

� �� �
.[16] We would like emphasize that

theMorsenonlinearity consider at this presentwork is quite distinct
from the harmonic description addressed in ref. [15]. The Morse
potential promotes the appearance of solitonic modes within the
lattice and also stands out as one themost convenientways tomodel
the vibrational profile for a wide range of molecules.[33]

The time-dependent wave function Φ tð Þi ¼ P
ncn tð Þ		 		ni is

obtained by numerical evaluation of the time-dependent
Schrödinger equation. The Wannier amplitudes evolve in time
according to the time-dependent Schrödinger equation (�h ¼ 1)

i
dcn tð Þ
dt

¼ ϵncn tð Þ � τexp �α qnþ1 � qn
� �� �

cnþ1 tð Þ

�τexp �α qn � qn�1

� �� �
cn�1 tð Þ ð3Þ
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The lattice equation is written as

Mn
d2qn tð Þ
dt2

¼ 1� exp � qnþ1 � qn
� �� �� �

exp � qnþ1 � qn
� �� ��

� 1� exp � qn � qn�1

� �� �� �
exp � qn � qn�1

� �� �

þαV c�nþ1cn þ cnþ1c
�
n

� �
exp �α qnþ1 � qn

� �� ��

� c�ncn�1 þ cnc
�
n�1

� �
exp �α qn � qn�1

� �� �gg ð4Þ

Here, time is rescaled as t ! Ωt, where Ω is the frequency of
harmonic oscillations around the minimum of the Morse
potential.[38] The generalized quantity τ ¼ V= �hΩð Þ thus deter-
mines the timescale difference between the (fast) electronic
dynamics and (slow) lattice vibrations. Following the ref. [38] we
consider V ¼ 0:1 and τ ¼ 10.

When t ¼ 0 we set the electron on site n ¼ 1, i.e.,
Φ t ¼ 0ð Þi ¼ P

ncn t ¼ 0ð Þ		 		ni, where cn t ¼ 0ð Þ¼ δn;1. We further
consider qn t ¼ 0ð Þ ¼ _qn t ¼ 0ð Þ ¼ 0 for n within the interval [1,
N]. Moreover, we put an acoustic Gaussian pulse generator at the
far left side of chain (i.e., at the site n ¼ 0):

q0 tð Þ ¼ A0e
�t2=2Δt2ð Þcos ωtð Þ ð5Þ

where ω is the frequency of the Gaussian acoustic pulse and
Δt ¼ 1=Δω is the time width. Our analysis is done through
numerical solutions of the Equations (3) and (4). In particular,
the electronic propagation is obtained by employing a high-order
Taylor expansion of the time evolution operator U δtð Þ[41] of the
form

U δtð Þ ¼ exp �i ~Heδt
� � ¼ 1þ

Xno
l¼1

�i ~Heδt
� �

l

l!
ð6Þ

where ~He is exactly the same one-electron Hamiltonian (1)
with normalized hopping ~Vnþ1;n ¼ �τexp �α qnþ1 � qn

� �� �
. The

wave-function at time δt is given by Φ δtð Þi ¼ U δtð Þj jΦ t ¼ 0ð Þi.
This method may be used recursively to get the wave-
function at time t (for details, see ref. [39]). The classical
equations (4) are solved with a high-order Euler method.[40]

It starts with a standard Euler method so as to find an initial
prediction q0n δtð Þ at time δt: q0n δtð Þ � qn t ¼ 0ð Þ þ δt dqndt t¼0j .
Atomic vibrations at time δt qn δtð Þ� �

are then obtained by
the recursive formula:

qn δtð Þ � ql0n δtð Þ � qn t ¼ 0ð Þ þ δt
2

dqn
dt

				
t¼0

þ dql0�1
n

dt

				
δt


 �
ð7Þ

where l0 denotes the number of steps. Our results were obtained
with δt ¼ 5� 10�3, no ¼ 12, and l0 ¼ 4. We stress that we
compared our results with data obtained from standard methods
(fourth-order Runge-Kutta (RK4),[40] for example, which lasts
twice as longer) and did not find any relevant qualitative
difference between them. In order to proceed with the electronic
transport analysis we computed the electronic mean position
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 6)
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(centroid) defined as hn tð Þi ¼ P
n nð Þ cn tð Þj j 2 and the Shannon

entropy S tð Þ ¼ �P
n cn tð Þj j 2ln cn tð Þj j 2.[41,42] The centroid in a

given time t represents the mean position of the electron using
the center of a self-expanded chain as the origin. The entropy S(t)
goes from 0, when the wave function is confined to a single site,
to log Nð Þ when it gets uniformly extended over the whole chain.
The Shannon entropy thus estimates the size of the wave packet
at time t.
3. Results

Numerical data were obtained for a very long chain featuring
N > 104 sites. However, we started the procedure with a small
chain with N� sites located at the left side (i.e., the differential
equations were initially solved within the region 1;N�½ �).
Whenever the sum B ¼ cN� tð Þj j 2 þ qN� tð Þ		 		� �

exceeded 10�20,
ten new sites were added to N� . This trick (called “self expanded
chain”) is an useful tool to avoid unwanted boundary effects. We
set N� ¼ 300 sites. For long times (� 2� 104 time units) N�

became larger than 104. According to Anderson localization
theory, any amount of uncorrelated disorder (W > 0) promotes
the degradation of electron propagation for an one-dimensional
lattice. Here we have considered W � 1 given it is not very
convenient to work at the weak disorder limit (W � 1) from a
numerical point of view.

In Figure 1 we depict the overall electronic dynamics of our
model. Also, we plot the electronic mean position hn tð Þi A� Cð Þ
and the Shannon entropy S(t) (E–F) versus time for various ω and
α values. For α ¼ 0 both quantities remained constant at the long-
time limit. It comprises a clear signature of the standard
Anderson’s localization phenomenology. As the electron–lattice
interaction (α > 0) is increased, both the centroid hn tð Þið Þ and
the Shannon Entropy (S(t)) exhibited a sub-diffusive dynamics.
This behavior is a clear breakdown of the Anderson’s
Figure 1. Electronic mean position hn tð Þi (A–C) and Shannon entropy
S(t) (D–F) versus time forω ¼ 0:02, 0:2, and 0:4;W ¼ 1; and α ¼ 0:0, 1.0,
and 2.0. For α > 0 we found a clear signature of the breakdown of
Anderson localization. Due to the effective coupling with the acoustic
pumping, the centroid (hn tð Þi) and the Shannon Entropy (S(t)) both
exhibit sub-diffusive dynamics.
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localization. Formally, for α > 0, we have here a one-dimensional
disordered nonlinear system which allows for electronic
propagation. The electron–lattice coupling promotes an effective
link between the electron and the acoustic wave that propagates
along the chain. Therefore, the electron is carried along the
disordered nonlinear chain by the lattice’s deformations. In
Figure 2, we analyzed the wave function profile along time (i.e.,
cnð tð Þj j 2 � t � n). Calculations were done for fixed W ¼ 1:0,
ω ¼ 0:02, and several α values.We stress that the wave packet was
initially prepared at the site n ¼ 1 (i.e., the left side of the chain).
While tracking down the wave packet evolution through the
time, we observed that, for α > 0, it splits itself into two parts: a
fast solitonic mode and a slower wave packet that remains close
to the left side (n ¼ 1) of the chain. This is due to the presence of
the Morse potential in our model. We emphasize that when an
initial amount of energy is injected in a nonlinear Morse chain, a
finite fraction of this initial energy propagates along the chain in
a solitonic-like profile; the other part evolves along the chain
Figure 2. A–F) Square modulus of the electronic wave-packet ( cnð tð Þj j 2)
versus t and n for W ¼ 1:0, ω ¼ 0:02 and α ¼ 0:0, 0.4, 0.8, 1.2, 1.6, and
2.0. For α > 0 the initially localized wave packet splits into two: a solitonic-
like mode (cf. pronounced peaks along the diagonal of the plane n� t)
and a free component close to the initial site. G) Soliton intensity (SI)
versus time t for W ¼ 1, α ¼ 2, and ω ¼ 0:02. For long times, disorder
destroys the solitonic propagation.

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 6)
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through nonlinear vibrational modes, often called radiation (see
refs. [43,44]). This phenomenon occurs in one-dimensional
chains even in the absence of disorder (W ¼ 0). As disorder is
increased in low-dimensional systems (1d in particular), the
solitonic and radiation components are still present for short
times. For long times, however, they get damped by Anderson
Localization.

A brief summary of the vibrational energy propagation is
given in Figure 3A and B. We ploted the lattice deformation
An ¼ eqn�qn�1 � 1j j versus n and t for W ¼ 1:0, ω ¼ 0:02, (A)
α ¼ 0:4e (B) 2.0. When analyzing these results, we noticed the
existence of two key aspects within the lattice deformation: a
solitonic-like deformation (close to the diagonal of ntimest
plane) and a strong diffusive radiation (see the region between
the diagonal of plane n� t and line n ¼ 1). Therefore, these two
kinds of nonlinear vibrations, which exist within the disordered
Morse chain (solitonic like mode and radiation), capture two
distinct portions of the initial electronic wave-packet due to the
electron–lattice coupling. It explains the two branches of
electronic wave packet profile in Figure 2. In addition to that,
there is intrinsic compositional disorder (with strength W)
which scatters both the solitonic mode and the portion of wave-
packet that propagates separately close to the left side. Therefore,
due the presence of disorder, the intensity the of the solitonic like
mode fades with time. In fact, by looking at Figure 2, we can see
this behavior clearly for 0 < α < 1 (i.e., Figure 2B and C).
Figure 3. An ¼ eqn�qn�1 � 1j j versus n and t for W ¼ 1:0, ω ¼ 0:02 and
A) α ¼ 0:4, B) α¼ 2.0. Pumping an acoustic mode at the left side of the
chain promotes the appearance of two kinds of lattice vibrations: a
solitonic-like propagation (located closely to the diagonal of plane n� t)
and a strong and diffuse radiation located between the diagonal of plane
n� t and the line n ¼ 1.
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However, for α > 1 that is not so clear (see Figure 2D–F) . To
better explore the solitonic dynamics for large α, we show the
soliton intensity (SI ¼ cs tð Þj j 2) versus time t in Figure 2G for
W ¼ 1, α ¼ 2 and ω ¼ 0:02. We emphasize that SI ¼ cs tð Þj j 2,
where s represents the position of the solitonic like mode along
time. The fading of the solitonic mode for long times is now
more evident, what brings us to state that the solitonic behavior
holds only for short timescales. Note that the electronic wave
packet still spreads in the long-time regime.

In Figure 4A–F, we investigated the dependence of our results
upon disorder strength W and pumping frequency ω. In
Figure 4A–D we plot the centroid hn tð Þi and the Shannon
Entropy S(t) versus time. There we see that even for intense
disorder sub-diffusive dynamics is obtained. This clearly
represents a strong violation of Anderson localization. Our data
demonstrated that the coupling between the electron and
acoustic pumping promotes electronic propagation within a
nonlinear system even at the intense disorder limit. In
Figure 4E and F we plot the long-time value of the centroid
hn t � 2� 104
� �i and the Shannon entropy S t � 2� 104

� �
versus ω. We observe that until ω � 2, the electronic wave
Figure 4. A–D) Centroid hn tð Þi and Shannon entropy S(t) versus time for
ω ¼ 0:02, 0.4, α ¼ 2, and W¼ 1, 2, 3. Our calculations indicate that the
sub-diffusive dynamics is obtained even for strong disorder (i.e.,
W > hVn;nþ1i). E, F) Long-time profile of the centroid hn t � 2ð Þ � 104i
and Shannon entropy S t � 2� 104

� �
versus ω. From ω ¼ 0:02 to ω � 2,

the electronic wave packet keeps its velocity and width approximately
constants. For ω > 2 the velocity and the width of the wave packet
exhibited slightly decreasing values.

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4 of 6)
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packet keeps its velocity and width approximately constants. For
ω > 2 the electronic velocity and the width of the wave packet
decreases a little bit. We point out that the Shannon Entropy
seems to be less dependent upon the pumping frequency ω. We
argue that is due to the logarithmic behavior of S(t). Small
modifications on the shape of the electronic wave packet
promote about negligible changes on the long-time behavior of S
(t). In disordered harmonic chains, high frequencies also exhibit
slower propagation. In general, acoustic modes with high
frequency have small wavelength and, according to standard
Anderson localization theory, modes with small wavelengths are
scattered by the disorder more easily. We believe that within this
nonlinear disordered chain a similar phenomenology occured.
4. Conclusions

In thisworkwehave investigated the dynamics of a single electron
in a Morse chain subjected to disorder and in the presence of an
external acoustic wave. We have used a quantum mechanics
formalism to describe the electron transport and a classical
nonlinear Hamiltonian for the lattice vibrations. We emphasize
that our model contains two distinct sources of disorder: disorder
within the on-site energies and at themassdistribution.Therefore,
both dynamics quantum and classical equations contains
disordered terms. The electron–lattice interaction was incorpo-
rated into the model through a hopping term defined as an
exponential function of the effective distance between the nearest
neighbors masses. By initializing the system with a fully localized
wave packet at the left end of the chain and placing a Gaussian
acoustic pulse generator at the same side, we observed that the
acousticwaveassociatedwith theelectron–lattice interaction isable
to sustain the wave packets dynamics even at the presence of
intrinsic disorder. We also investigated the dependence of the
electronic transport upon frequency of the Gaussian pulse, ω. In
summary, for large ω the electronic propagation became slightly
slower.
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