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We study the free-electron gas in an Apollonian network within the tight-binding framework. The scale-free
and small-world character of the underlying lattice is known to result in a quite structured energy spectrum
with deltalike singularities, gaps, and minibands. After an exact numerical diagonalization of the corresponding
adjacency matrix of the network with a finite number of generations, we employ a scaling analysis of the
moments of the density of states to characterize its multifractality and report the associated singularity spec-
trum. The fractal nature of the energy spectrum is also shown to be reflected in the thermodynamic behavior by
logarithmic modulations on the temperature dependence of the specific heat. The absence of chiral symmetry
of the Apollonian network leads to distinct thermodynamic behaviors due to electrons and holes thermal
excitations.
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I. INTRODUCTION

The understanding of the physical and geometrical prop-
erties of deterministic nonperiodic systems has substantially
increased after the discovery of quasicrystals in 1984 �1�. An
appealing motivation for studying these kinds of structures
was that they exhibit a highly fragmented energy spectrum
displaying a self-similar pattern. From a strictly mathemati-
cal perspective, it has been proven that their spectra are Can-
tor sets in the thermodynamic limit �2�. The origin of this
fractality can be attributed to the long-range order induced
by the nonusual hierarchical structure of the quasiperiodic
sequences used in the construction of the system �3,4�. While
periodic potentials lead to continuous spectra and extended
eigenvalues �Bloch-type energies�, and random potentials
lead to pure point spectra and exponentially localized states
�the energy of the spectrum itself is always a regular object,
with at most a finite number of bands�, quasiperiodic
Fibonacci-type potentials may lead to a Cantor set of zero
�Lebesgue� measure energy spectrum, with neither extended
nor localized eigenstates �for a review see Ref. �5��.

In recent years, extensive scientific work has been dedi-
cated to the study of complex networks �6�. These structures
with entirely novel topological properties have been very
useful as realistic substrates for many different transport and
information phenomena in a rich variety of social, biological,
and physical systems �7–12�. In particular, much attention
has been devoted to the study of networks with small-world
and/or scale-free properties. The first case refers to structures
where the diameter or average shortest path � increases loga-
rithmically with system size N �number of nodes�, �
� log N, while the second corresponds to networks where the
distribution of connectivity follows a power law, p�k��k−�,
with a characteristic exponent � and k being the degree �con-
nectivity� of the nodes.

When applied to the modeling of real materials, an obvi-
ous concern related to the feasibility of scale-free network

models is whether or not they can be embedded in regular
Euclidean lattices �13�. This feature is specially relevant in
materials science and condensed matter physics. The small-
world and scale-freeness characteristics found for some com-
plex networks represent intriguing aspects of these struc-
tures. These characteristics are strongly related to anomalies
found in their diffusional and electronic transport phenomena
behavior �14,15�. From a slightly different viewpoint, the
design of a suitable complex network to perform a specific
task as a material or an engineering device or system might
imply that the interplay between topology and dynamics in
these structures should be a very important issue. In this way,
deterministic networks are ideal candidates, since they are
somehow controllable and can therefore be subjected to the
particular constraints of the problem. However, the determin-
istic models for scale-free and/or small-world networks pro-
posed in previous works �16,17� cannot be embedded in Eu-
clidian space. Apollonian networks, on the other hand, are a
particular class of deterministic networks that are scale-free,
display small-world effect, can be embedded in a Euclidean
lattice, and show space-filling as well as matching graph
properties �18–20�.

Although some studies have been made about the topo-
logical features of Apollonian networks and their effect on
the behavior of a variety of transport and growth models
�21–23�, the connection between the hierarchical nature of
the network and thermodynamic properties has not been
deeply explored. Simplified fractals based on the triadic Can-
tor set �24,25�, as well as on the critical attractor of the
logistic and circle maps �26–28�, have been recently used to
model the energy spectrum of fractal/multifractal systems.
More sophisticated methods, based on the spectrum of eigen-
values of Hamiltonian systems, were also proposed, looking
for connections with several aspects of these spectra �scaling
laws, fractal dimension, etc.� as well as for some kind of
common behavior in the specific heat spectra. It has been
shown, among other features, that the low-temperature spe-
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cific heat behavior is intimately connected with some under-
lying fractal dimension characterizing the energy spectrum
�29,30�.

In this paper, we intend to investigate the thermodynamic
behavior of a free electron gas distributed in an Apollonian
network. Specifically, we will calculate the density of states
�DOS� in the tight-binding approximation for one electron
restricted to hop between the connected sites of an Apollo-
nian network. We will employ a scaling analysis of the DOS
to characterize its multifractal singularity spectrum. Further,
we will explore the thermodynamic fingerprints of the under-
lying multifractal energy spectrum, in particular the anoma-
lies appearing in the temperature dependence of the specific
heat. We will provide a detailed analysis of the relation be-
tween the presence of logarithmic oscillations in the low-
temperature specific heat and the level structure around the
Fermi energy as a function of the band filling. The possible
asymmetry between electrons and holes will also be explored
in connection to the absence of chiral symmetry of the Apol-
lonian network.

The plan of this work is as follows: in Sec. II, we present
the one-particle Hamiltonian and the electronic density of
states of the Apollonian network, using a theoretical model
based on the Schrödinger equation in the tight-binding ap-
proximation. Section III describes our approach to determine
the multifractal singularity spectrum of the DOS and the spe-
cific heat of the free electron gas in the Apollonian network.
Numerical examples of the specific heat and a discussion of
their temperature and band-filling dependence are then pre-
sented. The conclusions of this work are given in Sec. IV.

II. ELECTRON GAS IN THE APOLLONIAN
NETWORK

We start with the definition of the Apollonian network in
its simplest two-dimensional version by considering the
problem of a space-filling packing of disks according to the
ancient Greek mathematician Apollonius of Perga �31�.
Three disks touch each other and the hole between them is
filled by another disk that touches all the previous three,
forming much smaller holes that are then filled again and so
on. Connecting the centers of touching disks by lines, one
obtains a network which gives a triangulation that physically
corresponds to the force network of a dense granular pack-
ing. This network resembles the graphs introduced by Dodds
�32� for the case of random packings and has also been used
in the context of porous media �33�. Accordingly, at genera-
tion n �n=0,1 ,2 , . . . � there are m�k ,n�=3n ,3n−1 ,3n−2 , . . .,
32 ,3 ,1, and 3 vertices with degree k=3,3.2,3.22 , . . .,
3.2n−1 ,3.2n ,2n+1+1, respectively, where the last number of
vertices and degree correspond to the three corners, P1, P2,
and P3 �see Fig. 1�.

We will consider an electron gas composed of Ne nonin-
teracting electrons that can hop among the sites of an Apol-
lonian network. We assume that hopping is only allowed
between touching disks. In Fig. 1, we reproduce the first
generations of the resulting network. As already mentioned,
such a network has several important properties. In spite of
being a deterministic network, it displays scale-free and

small-world characteristics. In addition, such a complex net-
work has no translational invariance and cannot be separated
in interconnected sublattices.

In order to obtain the eigenstates and energy spectrum for
one particle restricted to hop among the sites of the above
scale-free Apollonian network, we consider a tight-binding
Hamiltonian written in the form

H = ��
i

�i�	i� + �
�i,j�

tij�i�	j� , �1�

where �i� is a Wannier state localized at site i of the network.
The hopping amplitudes will be taken as tij = t whenever the
pair of sites �i , j� represent the centers of touching disks of
the Apollonian packing and tij =0 otherwise. The on-site po-
tential energy is taken to be the same for all sites and will be
set to �=0 hereafter without any loss of generality. The one-
particle eigenstates can be expanded in the Wannier state
basis as ���=�i�i�i�. Therefore the coefficients of the eigen-
states expansion and the energy spectrum can be obtained
from the set of coupled equations,

t�
j

� j = E�i, �2�

where the sites j are those connected with the ith site. The
above set of equations can be numerically solved by direct
diagonalization of the associated matrix for lattices with a
finite number of generations. Recently, several spectral prop-
erties of this system were analyzed following this approach
�21,34�. In particular, the localized and extended character of
the energy eigenstates have been investigated, as well as
their degeneracy degree associated with the 2� /3 rotation
symmetry of the Apollonian network �34�. Here, we are go-
ing to characterize the scaling behavior of the corresponding
density of states and explore its influence on the thermody-
namic behavior of the free-electron gas.

In Fig. 2, we display the integrated density of states ob-
tained from a network with n=8 generations, which means a

1P

3P2P

FIG. 1. �Color online� Second generation of the Apollonian net-
work. P1, P2, and P3 represent the corner sites. Different symbols
refer to sites added at each new generation �central circle: n=0;
squares: n=1; and triangles: n=2�. The number of sites added in
each generation is given by 3n.
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total of N=9844 sites. The main characteristics of this energy
spectrum, which correspond to the eigenvalues of the adja-
cency matrix of the Apollonian network, were reported in
Ref. �21�. Some relevant aspects deserve to be pointed out.
First, there are several degenerated energy levels. The most
degenerated level is at E / t=0 accommodating 1 /3 of the
total number of states. Additional degeneracies are also
found as one approaches the bottom as well as the top of the
energy spectrum with decreasing degrees. The spectrum also
exhibits a set of energy gaps signaled by the horizontal seg-
ments of the integrated density of states. These energy gaps
are well-defined at the first half of the energy spectrum
which is mainly composed of a discrete set of degenerated
energies. At the upper half of the spectrum, the intervals
between degenerated energies are filled by minibands form-
ing a continuum of states. However, the total number of
states in these minibands represents only a small fraction of
the total number of states which vanishes in the thermody-
namic limit �21,34�. The above features become more appar-
ent in Fig. 3 where we plot the density of states measured as
the fraction of states within small energy windows �E
=10−2. The asymmetric form of the density of states is a
consequence of the absence of chiral symmetry of the Apol-
lonian network, i.e., of the fact that this lattice cannot be
decomposed into two independent sublattices with nonzero
matrix elements connecting only sites of different sublattices.
We also computed the density of states for lattices with a
smaller number of generations in order to evaluate the finite-
size corrections. These are mainly affecting the exponential
tails with no relevant impact on the main features of the
density of states.

III. MULTIFRACTAL SCALING ANALYSIS AND SPECIFIC
HEAT

The presence of degeneracies and gaps at several energy
scales suggests that the above density of states for the one-

particle tight-binding Hamiltonian in an Apollonian network
has a fractal-like scaling. In order to explore the asymptotic
scaling behavior of the density of states, we consider it as
representing a normalized measure giving the fraction of
states within each energy window. Therefore the energy
spectrum is split into N energy windows of the same size and
the fraction of states within each window is considered as
being a normalized measure pj�N�. Actually, the spectrum of
complex systems may exhibit multiscaling with independent
power-law exponents governing the different moments of the
probability distribution. Halsey et al. �35� introduced a for-
malism to characterize such multifractal measures. The for-
malism defines a generalized partition function �q�N�
=� j=1

N pj
q. In the N→� limit, the main contribution to �q�N�

comes from a subset of all possible windows, whose number
scales as Nq	Nf�q�. The content in each contributing box
scales as Pq	N−
�q�. The multifractal measure is then char-
acterized by the continuous function f�
� which reflects the
different fractal dimensions of the subsets with singularity
strength 
.

There are several schemes in the literature to compute the
spectrum of multifractal exponents. Here, we will use the
one introduced by Chhabra and Jensen �36� conceived to
characterize measures that arise from multiplicative pro-
cesses with a uniform grid at the nth level of the process. It
consists of determining the Hausdorff dimensions of a family
of generalized normalized measures defined as

�i�q,N� =
pi�N�q

� j=1
N pj�N�q . �3�

The Hausdorff dimension of the asymptotic support of ��q�
is given by
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FIG. 2. Integrated density of states for an Apollonian network
with n=8 generations. The vertical segments signal degenerated
energy levels while the horizontal segments are associated with
energy gaps. The largest degeneracy is at E=0 which supports 1 /3
of the one-particle states. Minibands are present in the upper half of
the spectrum.
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FIG. 3. Density of states representing the fraction of states lo-
cated in small energy windows �E / t=10−2 for a n=8 Apollonian
network. The first half of the energy spectrum is mainly composed
of a discrete set of degenerated levels separated by gaps, while in
the second half the minibands are visible. The presence of many
scales of energy gaps and degeneracies suggests a fractal scaling.
The inset is an amplification of the DOS showing the minibands
above the band center.
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f�q� = − lim
N→�

1

ln N�
i=1

N

�i�q,N�ln �i�q,N� , �4�

for which the average singularity strength can be evaluated
as


�q� = − lim
N→�

1

ln N�
i=1

N

�i�q,N�ln pi�q,N� . �5�

Multifractal scaling ideas have been widely used to inves-
tigate a large class of complex systems, such as turbulent
flow �37–39�, dynamical systems �40–42�, and phase transi-
tions �43–45�, among many others �46–48�. In order to
evaluate the singularity spectrum f�
� of the density of states
for one particle in the Apollonian network, we partitioned the
energy spectrum of networks with a distinct number of gen-
erations. The number of windows was chosen to be equal to
the total number of sites. In Fig. 4, we report the estimated
singularity spectrum of networks with n=5, 6, 7, and 8 gen-
erations. Significant finite-size corrections are mainly present
at the extremal regions of the singularity spectrum. These
regions are associated with the extremal sets of the multifrac-
tal measures. However, the increasing range of values for 

as the size of the network is increased confirms the multi-
scaling nature of the density of states in the thermodynamic
limit. The maximum value of the fractal dimension fmax�1
is associated with the presence of gaps �regions of null mea-
sure� of many energy scales. The set of the measure with the
minimal singularity strength 
 supports the regions with
maximal probability. In the thermodynamic limit, it is domi-
nated by the single degenerate level at E=0 which is consis-
tent with a zero Hausdorff dimension for this set. On the
other hand, the set with maximal singularity strength repre-
sents the boxes with minimal probability. In this case, these

are the boxes enclosing the continuum minibands and have a
finite fractal dimension.

The thermodynamic behavior of an electron gas com-
posed of Ne noninteracting electrons in an Apollonian net-
work can be directly obtained from the above multifractal
energy spectrum. According to the Fermi-Dirac statistics, the
average occupation number of each energy state is given by

	ni� =
1

1 + exp�
��i − ���
, �6�

where 
=1 /kBT and � is the chemical potential. Here, we
are not including the spin degeneracy. An Apollonian net-
work with n generations has N=3+ �3n+1−1� /2 sites. There-
fore the chemical potential can be computed as a function of
the temperature and the band filling Ne /N by imposing that
Ne=�i=1

N 	ni�, from which ��Ne /N ,T� can be numerically ex-
tracted.

The specific heat of such electron gas at constant volume
can be computed explicitly as Cv=dU ��Ne /N ,T� /dT�V,
where V is the volume of the system which is kept constant
by fixing the number of generations of the Apollonian net-
work. The average internal energy is expressed as
U�Ne /N ,T�=�i�i	ni�. It is straightforward to show that the
specific heat can be put in the form

Cv/kB = �
/2�2
�
i

�i
2 cosh−2�
��i − ��/2�

−
��i�i cosh−2�
��i − ��/2��2

�i cosh−2�
��i − ��/2� 
 . �7�

In Fig. 5, we show the specific heat for the case of half
band filling �Ne /N=1 /2� as computed considering Apollo-
nian networks with distinct generations. From these curves,
we can evaluate the magnitude of the finite-size corrections
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FIG. 4. Multifractal singularity spectrum of the density of states
for one particle in Apollonian networks with n=5, 6, 7, and 8 gen-
erations. For computing the multifractal exponents, the energy spec-
trum was partitioned in N boxes, where N is the total number of
sites for each generation. Finite-size corrections are mainly affect-
ing the extremal segments of the singularity spectrum. The slight
increase of the range of values for 
 for larger sizes confirms the
multiscaling nature of the density of states in the thermodynamic
limit.
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FIG. 5. Specific heat per electron as a function of temperature
for the case of a half-filled band Ne /N=1 /2. Apollonian networks
with n=5, 6, 7, and 8 generations were considered. Finite-size cor-
rections are only significant at very small temperatures. The high
temperature decay Cv	1 /T2 is typical of systems with a bounded
energy spectrum. The anomaly observed as a strong deviation from
the usual power-law low-temperature behavior reflects the existence
of energy gaps near the Fermi energy.
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to the thermodynamic behavior present in our calculations.
We can see clearly that for a network with n=8 generations,
the finite-size corrections are very small for temperatures
larger than kBT / t=10−3 and specific heat per particle as small
as Cv /Ne=10−4kB. There are some features in the tempera-
ture dependence of the specific heat that deserve to be
stressed. First, it presents a 1 /T2 decay at high temperatures,
as expected for systems with a bounded energy spectrum.
Further, at low temperatures, it follows closely a power-law
behavior, as usual for free-electron gases. There is a clear
deviation from this behavior at a temperature of the order
kBT / t=10−1. In order to understand this feature, one should
notice that, at half filling, the Fermi energy is located exactly
at the band center E=0 with this degenerated level partially
filled. At very low temperatures, the electrons close to the
Fermi energy are thermally excited to the miniband right
above E=0 �see Fig. 3�. However, this miniband supports
only a very small fraction of electrons. After the initial ther-
mal excitation, this miniband becomes fully occupied. This
miniband and the degenerated states at E=0 are separated
from the other allowed states by energy gaps. Therefore the
system starts to lose its capacity to exchange energy with a
thermal reservoir up to a temperature high enough to pro-
mote the electrons to the closest unoccupied energy states. It
is important to mention that the specific heat of strongly
correlated electrons interacting via a Hubbard Hamiltonian in
the Apollonian network was recently analyzed �49�. At half
filling, it was shown that a low-temperature peak emerges in
the regime of strong interactions due to low-lying collective
excitations. In the limit of vanishing Hubbard coupling, the
specific heat exhibited a single peak, as the one here re-
ported. However, the numerical procedure used to study
strongly correlated electron systems limited the analysis
based on the exact diagonalization of the Hamiltonian to a
very small network encompassing only seven sites. There-
fore the low temperature anomaly due to the structured char-
acter of the density of states, as well as its asymptotic power-
law decay for very large networks, as it is shown in Fig. 5,
could not be observed in Ref. �49�.

The above anomaly on the specific heat becomes even
more pronounced at smaller band fillings. In Fig. 6, we show
the cases of Ne /N=1 /4, 1 /8, and 1 /16. As the band filling
decreases, the Fermi energy falls deeper in the fractal struc-
ture of the energy spectrum composed of degenerated levels
separated by energy gaps. Therefore different energy scales
associated with the fractal nature of the gaps emerge as a
sequence of oscillations in the specific heat. In the limit of
very small band fillings, the Fermi-Dirac statistics become
equivalent to the classical Maxwell-Boltzmann statistics. In
this case, the specific heat of systems with a fractal energy
spectrum develops log-periodic oscillations in the specific
heat, a trend indeed observed in Fig. 6.

The absence of chiral, and consequently, of electron-hole
symmetry in the Apollonian network can be observed in the
temperature dependence of the specific heat. In Fig. 7, we
plot the specific heat per hole considering band fillings of
Ne /N=3 /4, 7 /8, and 15 /16 which are complementary of
those depicted in the previous figure. In these cases, the
Fermi-energy falls in a region where the degenerated energy
levels are separated by minibands. The presence of mini-

bands smoothes the oscillations in the temperature depen-
dence of the specific heat. Further, as we approach the full
band regime, the low temperature specific heat of holes be-
comes much smaller than that for electrons once the degen-
eracies are smaller at the top than at the bottom of the energy
band.

IV. CONCLUSIONS

In summary, we studied the free-electron gas in an Apol-
lonian network. We have shown that the scale-free nature of
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FIG. 6. Specific heat per electron as a function of temperature in
an Apollonian network with n=8 generations and band fillings
Ne /N=1 /4, 1 /8, and 1 /16. The oscillations in the specific heat are
associated with the increasing number of scales of energy gaps and
degeneracies as one approaches the bottom of the band. In the limit
of Ne /N→0 the specific heat starts to develop log-periodic oscilla-
tions, as expected for classical systems with a fractal energy
spectrum.
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FIG. 7. Specific heat per hole �Nh=N−Ne� as a function of
temperature in an Apollonian network with n=8 generations and
band fillings Ne /N=3 /4, 7 /8, and 15 /16, complementary to those
depicted in Fig. 6. The absence of electron-hole symmetry is clearly
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the network leads to a multifractal energy spectrum that pre-
sents degeneracies, gaps, and minibands of several scales.
The absence of chiral symmetry of the lattice implies an
asymmetry of the density of states, leading to distinct prop-
erties associated with electrons and holes. We reported the
multifractal singularity spectrum of the density of states and
showed that, while the region containing the largest density
of states is of null measure with zero fractal dimension, the
minibands are distributed on a fractal support. We also
showed that the fractal structure of the energy spectrum has
strong signatures in the thermodynamic behavior of the
Apollonian electron gas. Logarithmic oscillations in the tem-
perature dependence of the specific heat reveals the existence
of several energy scales in the underlying spectrum. These
oscillations are more pronounced at low band fillings be-
cause the lower-half of the energy spectrum has a more
sharply defined fractal sequence of energy levels. At the up-
per half of the spectrum, the presence of minibands sup-

presses the specific heat oscillations, giving a clear thermo-
dynamic evidence of the absence of electron-hole symmetry.
It would be interesting to investigate if other Hamiltonian
systems defined in scale-free lattices would have a similar
multifractal energy spectrum as well as its thermodynamic
signatures. In particular, the study of collective excitations,
such as phonons and magnons, in scale-free lattices would
contribute to a more complete scenario for the understanding
of the solid state properties of such complex structures. We
hope the present results can stimulate further works along
these directions.

ACKNOWLEDGMENTS

This work was financially supported by CNPq, Rede
Nanobioestruturas, CAPES, FINEP �Brazilian research agen-
cies�, FAPEAL �Alagoas State agency�, and FUNCAP �Ceará
State Agency�.

�1� D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev.
Lett. 53, 1951 �1984�.

�2� J. Bellisard, A. Bovier, and J.-M. Ghez, Commun. Math. Phys.
135, 379 �1991�; A. Bovier and J.-M. Ghez, ibid. 158, 45
�1993�.

�3� P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
�1985�.

�4� J. B. Sokolof, Phys. Rep. 126, 189 �1985�.
�5� E. L. Albuquerque and M. G. Cottam, Phys. Rep. 376, 225

�2003�.
�6� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
�7� R. Sharan and T. Ideker, Nat. Biotechnol. 24, 427 �2006�.
�8� S. Wassermann and K. Faust, Social Network Analysis �Cam-

bridge University Press, Cambridge, England, 1994�.
�9� A.-L. Barabási and R. Albert, Science 286, 509 �1999�.

�10� R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.
Lett. 85, 4626 �2000�.

�11� R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.
Lett. 86, 3682 �2001�.

�12� A. A. Moreira, J. S. Andrade, and L. A. Nunes Amaral, Phys.
Rev. Lett. 89, 268703 �2002�.

�13� A. F. Rozenfeld, R. Cohen, D. ben-Avraham, and S. Havlin,
Phys. Rev. Lett. 89, 218701 �2002�.

�14� J. Quintanilla and V. L. Campo, Phys. Rev. B 75, 144204
�2007�.

�15� L. K. Gallos, C. Song, and H. A. Makse, Phys. Rev. Lett. 100,
248701 �2008�.

�16� S. Jung, S. Kim, and B. Kahng, Phys. Rev. E 65, 056101
�2002�.

�17� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.
Rev. E 65, 066122 �2002�.

�18� J. S. Andrade, H. J. Herrmann, R. F. S. Andrade, and L. R. da
Silva, Phys. Rev. Lett. 94, 018702 �2005�.

�19� J. P. K. Doye and C. P. Massen, Phys. Rev. E 71, 016128
�2005�.

�20� D. J. B. Soares, J. S. Andrade, H. J. Herrmann, and L. R. da
Silva, Int. J. Mod. Phys. C 17, 1219 �2006�.

�21� R. F. S. Andrade and J. G. V. Miranda, Physica A 356, 1
�2005�.

�22� J. P. K. Doye and C. P. Massen, J. Chem. Phys. 122, 084105
�2005�.

�23� A. A. Moreira, D. R. Paula, R. N. Costa Filho, and J. S. An-
drade, Phys. Rev. E 73, 065101�R� �2006�.

�24� C. Tsallis, L. R. da Silva, R. S. Mendes, R. O. Vallejos, and A.
M. Mariz, Phys. Rev. E 56, R4922 �1997�.

�25� R. O. Vallejos, R. S. Mendes, L. R. da Silva, and C. Tsallis,
Phys. Rev. E 58, 1346 �1998�.

�26� L. R. da Silva, R. O. Vallejos, C. Tsallis, R. S. Mendes, and S.
Roux, Phys. Rev. E 64, 011104 �2001�.

�27� I. N. de Oliveira, M. L. Lyra, and E. L. Albuquerque, Physica
A 343, 424 �2004�.

�28� I. N. de Oliveira, M. L. Lyra, E. L. Albuquerque, and L. S. da
Silva, J. Phys.: Condens. Matter 17, 499 �2005�.

�29� P. W. Mauriz, E. L. Albuquerque, and M. S. Vasconcelos, Phys.
Rev. B 63, 184203 �2001�; Physica A 294, 403 �2001�.

�30� C. G. Bezerra, E. L. Albuquerque, A. M. Mariz, L. R. da Silva,
and C. Tsallis, Physica A 294, 415 �2001�; C. G. Bezerra, E. L.
Albuquerque, and M. G. Cottam, ibid. 301, 341 �2001�.

�31� D. W. Boyd, Can. J. Math. 25, 303 �1973�.
�32� J. A. Dodds, J. Colloid Interface Sci. 77, 317 �1980�.
�33� P. M. Adler, Int. J. Multiphase Flow 11, 91 �1985�.
�34� A. L. Cardoso, R. F. S. Andrade, and A. M. C. Souza, Phys.

Rev. B 78, 214202 �2008�.
�35� T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and

B. I. Shraiman, Phys. Rev. A 33, 1141 �1986�.
�36� A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327

�1989�.
�37� J. F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. Lett. 67,

3515 �1991�.
�38� P. Kestener and A. Arneodo, Phys. Rev. Lett. 91, 194501

�2003�.
�39� L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte,

and F. Toschi, Phys. Rev. Lett. 93, 064502 �2004�.
�40� V. Afraimovich and G. M. Zaslavsky, Phys. Rev. E 55, 5418

DE OLIVEIRA et al. PHYSICAL REVIEW E 79, 016104 �2009�

016104-6



�1997�.
�41� C. R. da Silva, H. R. da Cruz, and M. L. Lyra, Braz. J. Phys.

29, 144 �1999�.
�42� N. Hadyn, J. Luevano, G. Mantica, and S. Vaienti, Phys. Rev.

Lett. 88, 224502 �2002�.
�43� M. Schreiber and H. Grussbach, Phys. Rev. Lett. 67, 607

�1991�.
�44� A. D. Mirlin, Y. V. Fyodorov, A. Mildenberger, and F. Evers,

Phys. Rev. Lett. 97, 046803 �2006�.

�45� C. Monthus and T. Garel, Phys. Rev. E 76, 021114 �2007�.
�46� H. E. Stanley, L. A. N. Amaral, A. L. Goldberger, S. Havlin, P.

C. Ivanov, and C. K. Peng, Physica A 270, 309 �1999�.
�47� A. Turiel and C. J. Perez-Vicente, Physica A 322, 629 �2003�.
�48� J. Ozik, B. R. Hunt, and E. Ott, Phys. Rev. E 72, 046213

�2005�.
�49� A. M. C. Souza and H. Herrmann, Phys. Rev. B 75, 054412

�2007�.

FREE-ELECTRON GAS IN THE APOLLONIAN NETWORK:… PHYSICAL REVIEW E 79, 016104 �2009�

016104-7


