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Dynamics of interacting electrons under effect of a Morse potential
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We consider interacting electrons moving in a nonlinear Morse lattice. We set the initial conditions as follows:
electrons were initially localized at the center of the chain and a solitonic deformation was produced by an impulse
excitation on the center of the chain. By solving quantum and classical equations for this system numerically, we
found that a fraction of electronic wave function was trapped by the solitonic excitation, and trapping specificities
depend on the degree of interaction among electrons. Also, there is evidence that the effective electron velocity
depends on Coulomb interaction and electron-phonon coupling in a nontrivial way. This association is explained
in detail along this work. In addition, we briefly discuss the dependence of our results with the type of initial
condition we choose for the electrons and lattice.
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I. INTRODUCTION

Time evolution of interacting electrons under effect of
electron-phonon coupling is an interesting theme that has
direct association with electrical properties of materials. In
a one electron alloy, the interaction between electrons and
optical phonons can be effectively described by a nonlinear
Schrödinger equation [1]. Given the background, the most in-
teresting phenomenon related to the effective electron-electron
term is called self trapping (ST). The ST transition occurs when
the nonlinearity strength exceeds a critical value that has the
same order of the bandwidth [2–6]. It is worth mentioning
Davydov’s contribution to the study of free electrons under
effect of lattice vibration. He developed a model that assumed
a nonlinear interaction between a linear electronic model and
a linear lattice. It led to an important result: an electron-lattice
nonlinear term promotes charge transport [7–11].

More recently, Velarde and coworkers demonstrated the
existence of a new kind of “quasiparticle” in nonlinear lattices
and they also have shown its importance to the noninteracting
electron dynamics [12–27]. This new “quasi-particle” is a
consequence of the coupling between self-trapped states
and the lattice solitons (it was termed as solectron). The
electronic transport mediated by lattice solitons was also
investigated in several two-dimensional anharmonic lattices,
particularly in a square lattice similar to the cuprate lattice [25].
They found numerical evidence of electron-soliton transfer
along crystallographic axes. Electronic transport mediated
by acoustic lattice soliton excitations was also obtained in
triangular anharmonic lattices [27].

Some experimental investigations on electron dynamics
under the presence of electron-lattice interaction can be found
in Refs. [28–31]. For example, in Ref. [29] the authors arrested
a single electron in a quantum dot and they drove it along a
channel up to a another quantum dot using a surface acoustic
wave (SAW). After changing SAW direction several times,
the electron moved from one dot to another and back again
like a ball in a table tennis game. The authors obtained up to
60 shots with good quality. In general terms, the electronic
transport mediated by SAW is a direct consequence of the
effective electron-lattice interaction. When a SAW propagates

along an piezoelectric material such as GaAs substrate, that
generates an electrostatic field. The electron is captured by this
electrostatic field and propagates along the channel [29]. It was
revealed the possibility of using this “controlled motion” in the
framework of quantum computing. For example, a quantum
“bit” can be moved between two distant places. The possibility
of using SAW to move electrons and construct quantum bits
has attracted immense interest [28,32–36].

The competition between the electron-lattice term and the
electron-electron interaction has been the subject of recent
investigations [37–41]. In Ref. [37], it was demonstrated
that depending on the degree of nonlinearity and Hubbard
interaction, the slope of electronic dispersion close to the
Fermi level had a significant decrease. The dynamics of two
correlated electrons in an anharmonic Morse-Toda lattice chain
was investigated in Ref. [38]. It was demonstrated that the
nonlinear coupling between the lattice vibrations and the
electrons promote the transport of paired electrons [38]. In
Ref. [37], the problem of two interacting electrons coupled to
dispersive phonons in a nonlinear lattice was investigated. By
using numerical methods, an interesting collection of discrete
breathers modes induced by the electron-phonon coupling
was obtained. The interplay between electron-electron and
electron-phonon interactions was studied in Ref. [41]. The
authors considered the time evolution of two electrons initially
close to each other in a 1D crystalline nonlinear chain. It was
shown that the magnitude of the electron-phonon coupling
χ necessary to promote the self-trapping decreases as the
electron-electron interaction U is increased [41].

Here, we consider the competition between the electron-
lattice coupling and electron-electron interaction. In most of
the work, we make three assumptions in addition to the basic
electron-lattice model: (1) The two electrons are in the singlet
subspace moving in a nonlinear Morse lattice; (2) they are
initially fully localized at the center of chain; (3) the vibrational
energy is introduced at the nonlinear lattice by using an
impulse excitation in the same region as the initial electronic
wave position. We solve the quantum and classical equations
for this problem and we track the electronic dynamics. Our
results suggest that both electrons are trapped by the solitonic
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excitation. The numerical calculation also shows nontrivial
dependence of the effective electron velocity on the Coulomb
interaction and on electron-lattice coupling. We also discuss
electron wave-function trapping in the view of the bound
electronic states. We briefly examine the dependence of our
results with the type of initial conditions we choose for the
electrons and lattice.

II. MODEL AND NUMERICAL CALCULATION

We consider two-electrons moving in a 1D anharmonic
lattice of N masses. The complete Hamiltonian for the electron
and lattice can be written as H = Hlattice + Hele. Here, Hele is
a two-electron Hamiltonian defined as [38,42]

Hele = −
∑
n,σ

(Tn,n−1a
†
n,san−1,s + Tn,n+1a

†
n,san+1,s)

+U
∑

n

a
†
n,↑an,↑a

†
n,↓an,↓. (1)

a
†
n,s and an,s are the creation and annihilation operators

for the electron with spin s at site n. Tn,n+1 is the hopping
amplitude between sites n and n + 1. U represents the
electron-electron interaction (the Coulomb interaction) [43].
Hlattice represents the classical Hamiltonian of N masses
coupled by the Morse potential,

Hlattice =
∑

n

(
p2

n

2Mn

+ D{1 − e[−B(qn−qn−1)]}2

)
, (2)

where pn and qn are the momentum and displacement of the
mass at site n, respectively. For the sake of simplicity, we take
all particles with identical masses (Mn = 1). We also use the
dimensionless representation by absorbing the constants D and
B as follows [16]: qn → Bqn, pn → pn/

√
2D, and Hlattice →

Hlattice/(2D). The coupling between these two Hamiltonians
is introduced by considering the electronic hopping Tn,n+1 as a
function of the displacement qn+1 − qn. Following Ref. [16],
we get Tn,n+1 = −T0 exp [−α(qn+1 − qn)]. The quantity α

represents electron-lattice interaction degree (in units of 1/B).
For small relative displacement we recover the Su-Schrieffer-
Heeger approximation Tn,n+1 ≈ −T0[1 − α(qn+1 − qn)] [44].

The time-dependent two-electron wave function is
obtained by numerical solution of the time-dependent
Schrödinger equation. By using the Wannier representation,
the two-particles wave packet may be written as |�(t)〉 =∑

n,m cn,m(t)|n,m〉. Here, the ket |n,m〉 represents a state with
one electron with spin ↑ at site n and the other electron
with spin ↓ at site m. Wannier amplitudes (cn,m(t)) evolve
in time according to the time-dependent Schrödinger equation
as (h̄ = 1)

ih̄
dcn,m

dt
= −τ {e[−α(qm−qm−1)]cn,m−1

+ e[−α(qm+1−qm)]cn,m+1

+ e[−α(qn−qn−1)]cn−1,m

+ e[−α(qn+1−qn)]cn+1,m} + Ucn,mδn,m. (3)

Lattice equation is written as

d2qn

dt2
= {1 − e[−(qn+1−qn)]}e[−(qn+1−qn)]

−{1 − e[−(qn−qn−1)]}e[−(qn−qn−1)]

+αT0e
[−α(qn+1−qn)]

∑
m

{[c∗
m,n+1cm,n + c∗

m,ncm,n+1]

+ [c∗
n+1,mcn,m + c∗

n,mcn+1,m]}
−αT0e

[−α(qn−qn−1)]
∑
m

{[c∗
m,ncm,n−1 + c∗

m,n−1cm,n]

+ [c∗
n−1,mcn,m + c∗

n,mcn−1,m]}. (4)

We notice that right side of the quantum equation [Eq. (3)]
was multiplied by the quantity τ . Here τ = T0/(h̄�) where �

is the frequency of harmonic oscillations around the minimum
of the Morse potential. The generalized hopping τ determines
the time scale difference between the fast electronic dynamics
and the slow lattice vibrations.

Our calculations are made using precise numerical so-
lution of the previous Eqs. (3) and (4). The equations
of electron motion [Eq. (3)] are solved numerically em-
ploying a high-order method based on the Taylor expan-
sion of time evolution operator Õ(δt) = e(−iH̃eleδt) = 1 +∑no

l=1(−iH̃eleδt)l)/(l!) [42,45,46]. Here, H̃ele is exactly the
same one electron Hamiltonian [Eq. (1)] with normalized hop-
ping T̃n,n+1 = −τ exp [−α(qn+1 − qn)]. The wave-function at
time δt is given by |�(δt)〉 = Õ(δt)|�(t = 0)〉. This method
can be used recursively to get the wave-function at time t .

The classical equations [Eq. (4)] are solved by using a
predictor-corrector Euler method defined as following [47,48]:
The procedure starts by adopting a standard Euler method in or-
der to find a prediction qn(δt)∗ ≈ qn(t = 0) + δt[(dqn/dt)|t=0

at time δt . The next step consists of applying a correction for-
mula in order to get the approximation improved, i.e., qn(δt) ≈
qn(t = 0) + (δt/2)[(dqn/dt)|t=0 + (dq∗

n/dt)|δt ]. In our com-
putation, this formula is recursively applied three times.

The sum of the evolution operator was truncated at no = 12
and δt = 10−2. By using this Taylor-Euler formalism we could
keep the wave-function norm within the following numerical
tolerance: |1 − ∑

n,m |cn,m(t)|2| < 10−8 along the entire time
interval. The calculation of norm conservation is a first and
important check for the accuracy of our numerical procedure.
Besides, in order to provide a second check, we also solve Eqs.
(3) and (4) by using standard fourth-order Runge-Kutta (RK4)
[47]. The results obtained by both methods (Taylor-Euler and
RK4) do not show any qualitative difference. However, the
Taylor-Euler method requires lees time than standard (RK4)
formalism to achieve same dynamics (on average, time ratio
is approximately one-third).

In order to understand the two-electron dynamics on this
nonlinear model, we computed the wave-packet centroid of
each electron defined as [48,49]

〈m〉(t) =
∑
n,m

[m]|cn,m(t)|2, (5)

and

〈n〉(t) =
∑
n,m

[n]|cn,m(t)|2. (6)
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For an initial condition with both electrons fully localized
at the same site, the spatial symmetry of this initial state
and the interaction Hamiltonian provides 〈m〉(t) = 〈n〉(t). We
analyze these quantities and also the mean electronic velocity
(< vm >= d[〈m〉(t)]/dt or < vn >= d[〈n〉(t)]/dt) in order to
characterize the electronic transport for this model.

III. RESULTS AND DISCUSSIONS

We start showing and discussing our results for the two-
electron propagation within the Morse chain. We stress that
our initial condition consists of localizing both electrons
at the center of a long self-expanded chain [cn,m(t = 0) =
δn,N/2δm,N/2]. In our numerical technique the complete system
has about N = 3500 sites. However, we first use only a small
fraction of these sites. We begin our calculations in a small
chain with Nd = 200. Whenever the wave function or the
atomic vibration arrives at tthe boundary of the initial chain, we
expand the size of the initial chain by 20 sites (10 sites on the
left and 10 sites on the right of the lattice). By using this trick,
the sum of wave probability and atomic vibration value (in
modulus) on the boundary of chain can be kept less than 10−20,
thus avoiding border effect. We consider the following initial
condition for the Morse lattice: qn(t = 0) = 0 and pn(t =
0) = +δn,N/2. This procedure injects energy into the Morse
lattice and a finite fraction of the energy propagates along the
chain in a solitonic mode (due the nonlinear Morse potential)
[16,48]. This method, used in several works [12–18,22,45,48],
promotes the appearance of a solitonic mode moving along the
chain. The direction of the solitonic modes movement depends
on the sign of initial velocity used to inject vibrational energy
into the chain. Considering pn(t = 0) = −δn,N/2, the solitonic
mode has a reverse trajectory. We remind that only a finite
fraction of initial energy is participating in the solitonic-like
lattice deformation; the other part evolves along the chain
through nonlinear vibrational modes also called radiation
[50–54].

A plot of the wave-packet centroid < n > (t) versus time
t for α = 1.75 and U = 0,2,4,8,12 is given in Fig. 1(a). We
observe that the electronic position moves to the right side of
the chain and that the electronic velocity seems to depend
on the level of Coulomb interaction (U ). It is time for a
brief discussion of the electronic propagation from the angle
of electron phonon coupling intensity (α). The case with no
electron-lattice coupling (α = 0) is observed in the “inset.” We
see that, in the absence of electron-phonon coupling, mean
position remains fixed as time evolves. The electron-lattice
coupling promotes electronic displacement due to the presence
of solitonic modes within this model. The solitonic behavior
can be found by analyzing the lattice deformation in the
plot of An versus n and t [see Fig. 1(b)]. We emphasize
that An represents a kind of generalized probability of local
deformation. This quantity is obtained as follows: First, we
compute the quantity xn = (1 − e[−qn+qn−1])2. Second, we
normalize xn to get the generalized probability of local
deformation An; i.e., An = xn/

∑
n(xn).

When electron-phonon coupling arises (α > 0), the elec-
tronic wave function becomes partially trapped by the solitonic
modes. Because of the mobility of the solitonic mode, the
electron acquires nonzero velocity (they travel with supersonic
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FIG. 1. (a) Wave-packet centroid < n > (t) versus time t for

α = 1.75 and U = 0,2,4,8,12. Inset: < n > (t) versus t for no
electron-phonon coupling (α = 0) and also U = 0,2,4,8,12. n = 0
represent the center of chain. The electron-lattice term promotes
the coupling between the electronic wave-function and the solitonic
modes of the Morse chain. Therefore, a fraction of wave-packet is
trapped and therefore the two-electron packet obtain mobility. In the
absence of electron-phonon coupling, the two electron state has zero
velocity (see inset). (b) Lattice deformation An versus n and t for
α = 1.75 and U = 0. It shows the solitonic behavior of the Morse
chain. The electronic mean position < n > (t) follow, approximately,
the solitonic mode dynamics due to the electron-lattice coupling
α > 0.

velocity, in general). We stress that the momentum was
positive, therefore the solitonic modes propagate to the right
side (and as a result, the electron exhibits only positive
velocity). By inverting the sign of initial impulse excitation,
the solitonic mode (and also the electrons) will travel to the
left side of the chain. The authors in Ref. [38] anticipated the
trapping of two interacting electrons by the solitonic mode of a
Morse lattice using a distinct initial condition. Our interest rests
in the investigation of the effect of Coulomb interaction. In
order to do this, it was necessary to use an initial two-electron
wave packet with at least a large fraction of all bound states
components.
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FIG. 2. Electronic velocity < V > versus U and α. We observe
that for α in the interval [1.6,2] and U ≈ 3, there exists a local
maximum for the electronic velocity. For U > 4τ and strong electron-
lattice interaction (α >> 0) the electron’s velocity reaches a plateau.

In Fig. 2, we plot the effective electron velocity
< V >=< vn >=< vm > versus U and α. This figure was
made by solving the model for a wide range of U,α values
and the effective velocity for each case was obtained by
using a linear fitting of the data for < n > (t) versus t .
We kept α � 2. This limit, which was also used in Refs.
[16,48], enables us to do all calculations with sufficient
numerical accuracy. Analyzing Fig. 2, we notice that for
α ≈ 0, the effective velocity is close to zero and for strong
electron-phonon coupling (α > 1), the electron in fact exhibits
mobility. However, we also found a nontrivial dependence
of the electron velocity with the electron-electron coupling.
In special, for α within the interval [1.6,2] and U ≈ 3,
we observed a local maximum for the velocity. Also, for
strong Coulomb interaction and electron-lattice parameter, the
electronic velocity increases until it becomes roughly constant.
We emphasize that the velocity is not constant, of course. The
velocity for large U and α increases and reaches a rough
plateau (see Fig. 2). This behavior needs a more detailed
description. Within this two-electron model, we know that,
as U is increases, the density of states exhibits a subband of
bound states [42]. In the following paragraphs, we will analyze
the possible influence of these bound states in this unusual
transport.

We compute the one-electron effective wave function
defined as |cn(t)|2 = ∑

m |cn,m(t)|2. In Figs. 3(a)–3(c), we plot
|cn(t)|2 versus n and t for α = 1.75 and U = 0,2,4. We observe
that a finite fraction of the initial wave packet is captured by
the nonlinear lattice vibrations and it moves to the right side
of the chain. The remnant of the wave packet remains free and
spreads for both sides of chain. It is viewed for initial time on
Figs. 3(a)–3(c), but we agree that it is hard to be perceived. In
Fig. 3(d), we plot |cn(t)|2 versus n for the same cases showed in
Figs. 3(a)–3(c), however, we choose a single moment (t = 60
here). In the plot in Fig. 3(d), we observe clearly a finite
fraction localized at the right side of the chain and the rest of
the wave function spreads free along the chain. The marked
peak represents the fraction of wave function that was captured
by solitonic mode. The rest of the wave function becomes free
to spread within the chain. We will now discuss this behavior
in light of the competition between the electron-electron term
and the electron-phonon coupling.
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FIG. 3. (a–c) One-electron wave-function (|cn(t)|2 =∑
m |cn,m(t)|2) versus n and t for α = 1.75 and U = (a) 0,

(b) 2, and (c) 4. (d) |cn(t)|2 versus n for the same cases in (a–c), for
the moment t ≈ 60. We observe a finite fraction of the initial wave
packet captured by the solitonic mode and moved together with it.
The remainder of the wave function spreads along the chain.

The initial two-electron wave packet is a superposition of
all two-electron eigenstates. Due to the shape of the initial
two-electron wave packet (i.e., a δ function), the eigenstates
that have an initial small distance between both electrons
play a major role in the long-time evolution. Within the
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two-electron subspace that we are dealing with, there is
a collection of eigenstates in which the electron-electron
distance is zero (or almost zero). These states are called bound
states [42,55]. We will revisit now some concepts about these
states and its dependence with the electron-electron interaction
intensity U .

For U = 0, the density of states for the two-electron
Hamiltonian is exactly the same as that obtained for the
one-electron 2D Anderson Model. For U > 0, a new subband
of two-electron bound states appears. It was already proved
that the subband of bound states can be found within the
interval [U,

√
U + 16Z2], where Z represents the effective

hopping [42,55]. Here, in our model, the hopping energy is
time-dependent quantity (Tn,n+1 = −τ exp [−α(qn+1 − qn)]).
In order to study the two-electron band structure of the present
model, we consider the quantity Z as the mean value of
our time-dependent hopping (i.e., Z ≈< Tn,n+1 >≈ τ = 10).
Therefore, the two-electron free band covers the interval
[−4τ,4τ ] [42,55] and U < 4τ represents the “weak” Coulomb
interaction limit. We used the word “weak” so as to classify the
regime in which that free band and bound state band remains
merged. In the strong limit (U > 4τ ), the free band and the
bound state band are decoupled. Moreover, the width of the
bound state subband decreases [42,55]. Therefore, the number
of bound states within the initial wave packet decreases for
U > 4τ .

The dependence of the effective electronic velocity with
the value of U is quite related with the appearance of bound
states and its competition with the electron-lattice coupling.
In order to provide a better understanding of the relation
between the existence of bound states and the electron-soliton
dynamics, we investigated the two-electron wave-function
framework. We plot |cn,m(t ≈ 50)|2 versus n and m for
α = 1.75 and U = 0,1,2,3 [Figs. 4(a)–4(d)] and U =
60,80,100 [Figs. 5(a)–5(c)]. In Fig. 4, we observe the effect of
bound states as well as the one-electron free component. For
U = 0 a finite fraction of the wave function remains trapped
close to the center of plane n × m. This fraction represents
the portion of the wave function that was captured by the
solitonic mode. Furthermore, there are two branches of the
wave function that travel free along the n and m directions.
These branches represent the free electron components. As
the electron-electron term is increased (U = 1,2,3), we got
previous behavior combined to a finite fraction of the wave
function, which remains “trapped” along the diagonal of
the plane n × m. This diagonal wave represent the states
with n ≈ m, i.e., the bound states. Therefore, in spite of the
electron-soliton coupling being sufficient to capture a finite
fraction of the two-electron wave function, a free component
and also another component deriving from the bound states
are still present in the dynamics. Thus, as the Coulomb term is
increased, a competition between the electron-lattice term and
the dynamics of the free and bounded components occurs.
Within the weak Coulomb interaction U << 4τ , both the
free and bound subband are “merged.” It means electron-
soliton coupling can capture both components. When Coulomb
interaction is at strong limit U > 4τ (see Fig. 5), results change
drastically. We observe a large fraction of the wave function on
the diagonal of the plane n × m, while the free one becomes
sufficiently small.

FIG. 4. Two-electron wave-function for t ≈ 50 (|cn,m(t ≈ 50)|2)
versus n and m for U = (a) 0, (b) 1, (c) 2, and (d) 3. For U = 0 a finite
fraction of the wave function remains captured by the solitonic mode
close to the center of plane n × m. Moreover, there are two branches
of the wave function that travel free along n and m direction. For
U = 1,2,3, we also observed in addition to the previous situation,
that a finite fraction of the wave-function remains “trapped” along
the diagonal of the plane n × m, i.e., bound states.
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FIG. 5. The same kind of plot as in Fig. 4, i.e., |cn,m(t ≈ 50)|2
versus n and m for U = (a) 60, (b) 80, and (c) 100. For strong U

the bound states become dominant and the solitonic mode capture a
finite fraction of those states, thus promoting dynamics along the line
n ≈ m. This behavior also promotes increased velocity in the limit of
U > 4τ and strong electron-lattice interaction (α
0).

Let’s discuss qualitatively these results for strong U . We
stress, at first, that for U > 4τ the subbands related with the
free and the bound eigenstates are not merged, so they are
decoupled and become more apart as U increases. Second,
the initial condition type we have chosen (i.e., both electrons
fully initially localized) favors a minor free state subband
contribution in comparison to bound ones. Accordingly, for
strong U the initial wave packet is roughly a superposition
of many bound states. Due to the type of localized solitonic
mode we have in the Morse chain, it is easier to capture the
bound states component of a two electron wave packet. A
portion of initial wave packet related to the bound eigenstates
are trapped by the solitonic mode and move along the chain.
In short, for weak U , the solitonic mode captures both free
and bounded components then, the competition between these
distinct dynamics decreases the velocity. On the other hand,
for strong U , the bound states dominate and the electrons

remain together. Therefore, this “coupled pair” is captured
by the solitonic mode more easily. This feature is behind the
increasing of velocity within the limit of strong U and α.

Before concluding our work, we will make a brief ex-
planation of the kind of two-electron initial wave packet
we have used. The dependence of the electronic velocity
with the Coulomb interaction and electron-lattice term is
broadly associated with the bound states inside the initial
two-electron wave packet. We stress that the initial fully
localized two-electron wave packet we have used exhibit a
huge fraction of two-electron bound states [42]. Therefore,
Coulomb interaction plays a relevant role controlling elec-
tron’s velocity. An interesting question that arises in this
problem is to understand what would happen if we initially
put the electrons in different positions. With this kind of
initial condition, the number of bound states in the initial wave
packet decreases a lot. In addition, we also change the position
in which the vibrational energy is injected into the lattice.
Considering cn,m(t = 0) = δn,n0δm,m0 with n0 = N/2 − 30,
m0 = N/2 + 30 and impulse excitation as qn(t = 0) = 0
and pn(t = 0) = +δn,N/2−50, we solve the coupled set of
quantum/classical equations. A summary of results obtained
for U = 0,8,16 and α = 0 and 1.75 is shown in Figs. 6(a)–6(c).
We remind that the mean position was shifted such that
< n > (t) =< m > (t) = 0 is the center of chain. For α = 0
and U = 0 [see Fig. 6(a)], we observe that mean position of
each electron is constant, therefore the velocity is zero. In the
absence of electron-lattice term (α = 0), both electrons do not
interact with the nonlinear vibrational modes. Consequently,
the solitonic mode that appear in the Morse lattice does not
capture the electrons and they remain with no mobility. As
the Coulomb interaction is increased, even in the absence of
electron-lattice interaction, both electrons trend to move apart.
It is an outcome of the type of initial condition and the Coulomb
term. As the initial state does not contain many bound-states,
electrons avoid occupying the same position when U increases
(electron-electron repulsion).

In Figs. 6(b) and 6(c), we show some calculations for the
case with electron-lattice interaction (α = 1.75). We stress
again that the impulse excitation it was injected at position
N/2 − 50. It is noticeable, in Fig. 6(b), that vibrational energy
spreads within the chain and promotes also rise of a solitonic
vibrational mode that propagates from the bottom (n < 0) to
the top of chain (n > 0). This nonlinear propagation of energy
captures a finite fraction of the wave function of each electron
and then pushes both electrons to the same direction. We can
see this interesting phenomenon by analyzing the Fig. 6(c).
The mean position of each electron evolves to the top of chain
(n > 0), however, the velocity of each electron is different.
We observed that, for U = 0,8, the electron that was initially
localized closer to the vibrational energy input propagates with
largest velocity. The main explanation for this difference in the
velocity is the distance between the electron and the solitonic
mode at the beginning of dynamics: The larger the distance,
the more difficult for solitonic mode capture a finite fraction
of the electronic wave-packet. Moreover, we also have the
effect of Coulomb interaction repelling both electrons. We
observe this repulsion effect by analyzing the meeting time
for the electronic centroids. We observe that as U is increased
the meeting time also increases. This is a clear signature of
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FIG. 6. (a) Mean position of each electron for U = 0,8,16 and
α = 0. (b) Lattice deformation An versus t and n for U = 16 and
α = 1.75. (c) Mean position of each electron for U = 0,8,16 and α =
1.75. Calculations were done considering cn,m(t = 0) = δn,n0δm,m0

with n0 = N/2 − 30 and m0 = N/2 + 30 and qn(t = 0) = 0 and
pn(t = 0) = +δn,N/2−50.

the effective repulsion between both electrons for U > 0 and
for this type of initial condition. In Figs. 7(a)–7(d) we plot the
one-electron wave function |cn(t)|2 and |cm(t)|2 versus time t

and site index (n for one electron and m for the other one). We
used a 2D color mapping scheme to improve visualization.
Calculations were done for U = 0 and 16. In agreement
with our previous calculations of the centroid trajectories,
the most part of the one-electron wave-function moves to the
positive side of chain (n > 0) due to the coupling with the
nonlinear vibrational modes. Compare Figs. 7(a)–7(d) with

(a)
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FIG. 7. (a–d) One-electron wave function |cn(t)|2 and |cm(t)|2
versus time t and the site index (n for one electron and m for the other
one). Calculations were done for the same type of initial condition as
in Fig. 6 with (a, b) U = 0 and (c, d) U = 16.

Fig. 6(b). We observe that the two electron wave-packet is
“pushed” to the right side due to the presence of solitonic
mode. In Figs. 8(a)–8(f), we show a brief summary of our
results for the following initial conditions: the two-electron
wave-packet is defined as cn,m(t = 0) = δn,n0δm,m0 with n0 =
N/2 − 30, m0 = N/2 + 30 and impulse excitation as qn(t =
0) = 0, pn(t = 0) = +δn,N/2−30 and pn(t = 0) = −δn,N/2+30.
Therefore, for t = 0, we have one electron located at site n0 and
the other electron located at site m0. We name these electrons
as electron “n” and electron “m.” Also, we have two initial
impulse excitations located at the same site of each electron
with distinct velocity sign. That produces solitonic modes
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FIG. 8. (a, b) Lattice deformation An versus n and t for α =
1.75 and U = (a) 0 and (b) 16. (c, d) One-electron wave function
|cn(t)|2 and |cm(t)|2 versus time t and the site index (n for one electron
and m for the other one) for U = 0. (e, f) the same as in (c, d)
for U = 16. The initial conditions are: cn,m(t = 0) = δn,n0δm,m0 with
n0 = N/2 − 30, m0 = N/2 + 30 and impulse excitation as qn(t =
0) = 0, pn(t = 0) = +δn,N/2−30 and pn(t = 0) = −δn,N/2+30.

which travel in opposite directions. In Figs. 8(a) and 8(b), we
clearly observe the presence of two solitonic modes and also
a small amount of energy that spreads along the chain (also
called radiation, as noticed in [22,50–54]). These solitonic
modes travel in opposite directions and then collide in a
time between {20,30} units. The phenomenon of solitons’
collision is well known in the literature. In general, both
solitonic modes collide without any change in his directions
or intensity, exactly as it is shown in the figure 8(a,b). We
also observed that the main profile of Figs. 8(a) and 8(b) does
not exhibit any dependence with the Coulomb interaction. In
Figs. 8(c)–8(f), we see one-electron wave function |cn(t)|2
and |cm(t)|2 versus time t and site index (n for one electron
and m for the other one). For U = 0 the main result is quite
similar to the one observed in Ref. [17] for a single particle:
the solitonic mode captures a fraction of the wave-function
and pushes it along the chain [see Figs. 8(c) and 8(d)]. For
U = 16, we observe an interesting phenomenon quite related
to the Coulomb interaction and the electron-phonon coupling.
For a better understanding, lets discuss it in more detail: First,
we need to remind that two solitonic modes were generated
at different positions n0 and m0. We call these solitonic
modes as the solitonic mode “n” and solitonic mode “m,”
respectively. These solitonic modes capture each one a fraction
of the electronic wave function which was initially localized
at sites n0 and m0. Moreover, besides the fractions of wave
functions that were captured by the solitonic modes “n” and
“m,” there is still a fraction of the two electron wave-function
that remains free to move along the chain (we see it in these
figures and also in Figs. 1 and 2). The soliton-electron pair
that starts at site n0 = N/2 − 30 (called “electron-soliton n”)
meets the “electron-soliton m” and also the free part of the
wave-function of the electron “m.” Due to de presence of
Coulomb interaction, the fraction of bound states that exists
within this kind of initial condition can be easily captured
by the solitonic mode. Therefore, a finite fraction of the
electron “n” remains trapped by the solitonic mode “n” and
a small fraction of the bounded states is trapped by the other
solitonic mode “m”). The same phenomenon occurs for the
electron “m.” Therefore, the presence of Coulomb interaction
and the kind of initial condition plays relevant role in the
electron-phonon dynamics. In Figs. 9(a) and 9(b), we plot the
lattice deformation (An) and the one-electron wave-function
(|cn|2 and |cm|2) versus n (and m) for the same experiments as
in Figs. 8(a)–8(f). We choose two instants: t ≈ 20 and t ≈ 40,
i.e., before and after the collision of both solitonic modes [see
Fig. 8(a)]. We observe that the lattice deformations exhibit a
mobile and stable solitonic-like profile and a small amount
of energy that spreads along the chain (in good agreement
with previous works [17,22,45,50–54]). We also observe the
electron-phonon dynamics in detail: the stable solitonic-like
deformation captures a finite fraction of the wave packet and
the other part evolves in time interacting with the radiation
process.

IV. SUMMARY AND CONCLUSIONS

In this paper, we considered the problem of two interacting
electrons moving under effect of electron-phonon interaction.
Therefore, by using our formalism, the competition between
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FIG. 9. Lattice deformation (An) and one-electron wave function
(|cn|2 and |cm|2) versus n (and m) for the same experiments as in
Figs. 8(a–f) with (a) U = 0 and (b) U = 16. We choose two time
instants: t ≈ 20 and t ≈ 40, i.e., before and after the collision of
solitonic modes [see Fig. 8(a)].

the electron-lattice coupling and electron-electron interaction
was investigated. We considered the singlet subspace of a

standard two-electron Hamiltonian and we used a nonlinear
Morse lattice as a substrate. As initial condition, both electrons
were placed at half-chain position and an impulse excitation
started at the same locus in order to create a solitonic mode.
Using numerical methods, we solved quantum and classical
equations for this problem and we tracked the electronic
dynamics. Our results suggest the possibility of both electrons
being trapped by the solitonic mode and, consequently, the
rise of effective velocity of collective excitation. We also
noticed that the electron velocity depends on the Coulomb
interaction as well as on the intensity of the electron-lattice
interaction. Analyzing the wave-function topology for a long
time, we found some new and interesting information about
the nature of two-electron-soliton coupling: the presence
of bound states plays relevant role within the dynamics.
The existence of bound states in the initial condition and
their relation to the degree of the Coulomb interaction was
used to explain qualitatively the electronic velocity in our
model. We also discussed briefly the electronic dynamics
by considering the electrons initially separated. Our results
show that the electronic velocity exhibits an interesting and
new kind of dependence with the Coulomb interaction. In
particular, we demonstrated that in the case of distant electrons
(initial condition), it is possible to find clear signature of
electron-electron repulsion in time-dependent calculations.
The electron-electron repulsion is a direct consequence of the
Coulomb interaction and of the type of initial two-electron
wave-packet.
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