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We investigate the magnetocaloric effect in a diamond chain model on which competing interactions result
from the local quantum hopping of interstitial S=1 /2 spins which are intercalated between nodal Ising spins.
The model is exactly solvable by using exact diagonalization and the decoration-iteration mapping onto the
one-dimensional Ising model with effective parameters depending on the temperature and the external mag-
netic field. We analyze the thermodynamic behavior of the effective parameters in light of the ground-state
ordering and the level crossing of the low-lying excited states. Further, we investigate the magnetocaloric effect
on this spin chain model by computing isoentropy curves in the temperature versus external field parameter
space, as well as the adiabatic cooling rate. We show that the adiabatic cooling rate exhibits a pronounced
valley-peak structure in the vicinity of the critical fields associated with zero-temperature phase transitions.
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I. INTRODUCTION

The magnetocaloric effect consists on the heating or cool-
ing of a thermally insulated magnetic substance by changing
an external field. It has been used as a practical procedure to
reach ultralow temperatures in a process known as adiabatic
demagnetization. This process is also the basis for magnetic
refrigeration, whose working substance is a magnetic sample
instead of the gas used in the conventional refrigeration
technology.1 For low-temperature cooling applications, the
standard refrigerant materials are paramagnetic salts. These
systems basically contain noninteracting magnetic dipoles. A
weak coupling of the magnetic dipoles with the lattice is the
channel for the heat transfer process. In paramagnets, the
temperature decreases linearly as the magnetic field is de-
creased during an adiabatic process. In order to improve the
adiabatic cooling rate �T /�H �S higher densities of magnetic
dipoles are required. However, the residual interaction be-
tween the magnetic dipoles may induce spin ordering in this
regime. The reduced entropy due to the spin-spin coupling
thus limits the efficiency of the adiabatic demagnetization
process.

Due to the recent advances in the experimental techniques
of engineering and synthesis of new magnetic materials,
there has been a growing interest in the development of new
compounds with an improved magnetocaloric effect. A giant
magnetocaloric effect was reported in gadolinium-based ma-
terials which is related to a first-order transition between two
ferromagnetic phases.2 New substances with an enhanced
magnetocaloric effect have been recently discovered, which
includes La�Fe,Si�13, MnAs-based, Fe2P-based compounds,
and Heusler alloys with their scientific aspects and industrial
applicability are being widely investigated.3–6 The underly-
ing mechanism leading to an enhanced magnetocaloric effect
in these materials is related to a large entropy excess that
occurs at the vicinity of the first-order transitions exhibited
by these compounds. Within this scenario, the presence of
competing magnetic interactions plays a key role. The pos-
sibility of distinct ground states, which can be selected by
varying an external magnetic field, allows for a fine tuning of
the thermodynamic parameters leading to degenerate spin

ordering, and thus, to large adiabatic cooling rates. Enhanced
magnetocaloric rates in frustrated spin models have been re-
cently reported to demonstrate this mechanism.7–12

Low-dimensional magnetic systems with competing inter-
actions are known to present a rich thermodynamic
behavior.13–18 One of the most intriguing features is the oc-
currence of magnetization plateaus. In this regime, the sys-
tem does not respond to an external magnetic field. Magne-
tization plateaus were first predicted to occur in integer
antiferromagnetic spin chains and later demonstrated to also
emerge in chains with half-integer spins on trimerized and
frustrated geometries. Among the several models of low-
dimensional frustrated systems, the quantum Heisenberg spin
chain in a diamond topology with competing interactions has
been largely explored.19–25 This model exhibits magnetiza-
tion plateaus and double peak structures in the thermody-
namic response functions which reflect the interplay between
the competing ground states. These signatures have been ex-
perimentally observed in the diamond chain compound
Cu3�CO3�2�OH�2 known as azurite.26,27

Recently, we introduced an exactly solvable model con-
taining localized nodal Ising-type spins and exchanging
interstitial electrons in an anisotropic diamond chain
topology.28 In this model, the kinetic term associated with the
interstitial delocalized electrons produces antiferromagnetic
correlations leading to frustrated interactions. We showed
that this model presents most of the features of frustrated
low-dimensional spin chains such as magnetization plateaus
and two peaks in the specific heat and magnetic susceptibil-
ity. Further, the model exhibits four distinct ground states
which can be tuned by changing an external magnetic field
or the transfer integral which governs the amplitude of the
kinetic term. Actually, a more realistic model for the low-
energy properties of magnetic materials with a diamond
chain geometry should consider a Heisenberg Hamiltonian
and electron hopping between distinct unit cells. However,
the thermodynamic behavior of such extended model can
only be obtained by approximate analytical solutions or, al-
ternatively, by numerical studies of finite chains using exact
diagonalization or density-matrix renormalization-group
techniques. On the other hand, the restriction of internodal
hopping and Ising nodal spins allows for an exact analytical
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solution of the above Hamiltonian model while keeping the
main ingredients, such as geometry, quantum fluctuations,
frustration, and anisotropy, which are responsible for some of
the most remarkable thermodynamic characteristics of frus-
trated diamond chain compounds.28

The existence of four possible ground states in the dia-
mond chain model with mixed localized Ising and delocal-
ized interstitial spins suggests that this model system has the
essential ingredients needed to exhibit an enhanced magne-
tocaloric effect. Here, we will use the exact solution of this
model, based on its exact mapping in the Ising spin chain
with effective parameters, to compute the isoentropy curves,
as well as the adiabatic cooling rate �T /�H �S, as a function of
the temperature and external field. We will show that en-
hanced magnetocaloric rates take place in the vicinity of the
critical fields separating the possible ground states. We will
analyze the most prominent features of the adiabatic cooling
rate in light of the thermodynamic behavior of the effective
exchange coupling and magnetic field. This paper is orga-
nized as follows. In Sec. II we will describe the model
Hamiltonian and the exact solution of the associated partition
function by means of the decoration-iteration transformation
in the Ising spin chain. In Sec. III, we report the thermody-
namic behavior of the effective exchange coupling and effec-
tive field for a typical value of the transfer integral for which
all four possible ground states can be realized. In Sec. IV, we
compute the magnetic entropy, reporting the curves of isoen-
tropy to illustrate the adiabatic magnetocaloric effect, as well
as the adiabatic cooling rate. The latter will be shown to
reach low-temperature values that can be 1 order of magni-
tude larger than in paramagnets, specially in the vicinity of
the critical fields. Finally, in Sec. V, we summarize our main
results.

II. KINETICALLY FRUSTRATED DIAMOND CHAIN
MODEL

The diamond chain model, also known as AB2 chain, con-
sists of linked unitary cells with two species of sites. Those
sites of specie A form the chain nodes, while the sites of
specie B are intercalated between the nodes. When localized
spins are assumed to occupy each site of this chain and ex-
change couplings are allowed only between sites of different
species, the ground state is unique irrespective of the relative
magnitude and the nature of the exchange couplings J1 and
J2 along each direction of the diamond cell. Frustration ef-
fects can only take place when antiferromagnetic couplings
are allowed between sites of the same specie. Recently, we
demonstrated that frustration can be kinematically produced
by allowing the internodal spins to hop between the pairs of
B sites of each unitary cell.28

For simplicity, we are going to consider both nodal and
internodal spins as Ising variables � and S, respectively. Fur-
ther, we will restrict our analysis to the case of antiferromag-
netic exchange couplings which produce a more diverse sce-
nario regarding the ground state and thermodynamic
behavior. A diagrammatic representation of the chain is
shown in Fig. 1. The cell Hamiltonian Hi can be written in a
matrix form in the space state corresponding to the six pos-

sible configurations for the internodal spins. The two states
with parallel internodal spins are eigenstates of the cell
Hamiltonian. In these states, there is one spin in each site and
the hopping is forbidden by the Pauli exclusion rule. These
states are represented by the ket states �↑ ,↑� and �↓ ,↓�. In the
absence of an external magnetic field, the corresponding ei-
genvalues can be written as �↑ ,↑�Hi�↑ ,↑�=−�↓ ,↓�Hi�↓ ,↓�=
−�J1+J2���i+�i+1�, where �i and �i+1 are the left and right
nodal spins, respectively. The other four states with antipar-
allel internodal spins are mixed due to the single-particle
hopping mechanism. Representing these states by the kets
�↑↓ ,0�, �↑ ,↓�, �0, ↑↓�, and �↓ ,↑�, the cell Hamiltonian in this
subspace can be written as

Hi =�
0 t 0 t

t − �J��i − �i+1� t 0

0 t 0 t

t 0 t �J��i − �i+1�
� ,

where t is the hopping amplitude between internodal sites
and �J=J1−J2 is the exchange mismatch accounting for the
anisotropy of the magnetic interactions within the diamond
cell. Notice that the ket states with antiparallel internodal
spins are not stationary. The Hamiltonian eigenstates will be
composed by the linear superpositions of states that diago-
nalize the cell Hamiltonian. In the regime of large hopping
amplitudes, the low-energy eigenstate becomes one of these
linear superpositions of antiparallel internodal spins states.
This feature leads to an antiferromagnetic correlation be-
tween the internodal spins that can effectively produce frus-
tration effects. In the presence of a magnetic external field, a
diagonal term has to be added to the cell Hamiltonian, which
takes the form

Hi�H� = Hi�H = 0� −
H

2
��i + �i+1� − H�Si,1 + Si,2� , �1�

where Si,j �j=1,2� identifies each of the internodal spins at
cell i. The external field favors the parallel alignment of the
spins, which competes with the kinetically induced antifer-
romagnetic coupling between the internodal spins.

By employing an exact diagonalization of the cell Hamil-
tonian, the above diamond chain model was shown to exhibit
four possible ground states, depending on the relation among
the hopping amplitude t, the external field H, and the ex-
change mismatch �J.28 A saturated paramagnetic �SPA� state

FIG. 1. Diagrammatic representation of the kinetically frustrated
diamond chain model. Internodal spins with antiparallel spins are
allowed to hop within the inner sites of each diamond unit with
hopping probability amplitude t. The magnetic interactions are an-
isotropic with distinct exchange couplings along each direction of
the unit cell. The state vectors illustrate the notation used in text.
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with all spins aligned in the field direction is the ground state
at high magnetic fields. The system can also assume a ferri-
magnetic �FRI� ground state, on which the internodal spins
are aligned parallel to the external field while the nodal spins
are aligned antiparallel to the field. In these two states, the
hopping mechanism is suppressed because the internodal
spins are parallel to each other. The other possible ground
states are the unsaturated paramagnetic �UPA�, with nodal
spins parallel to the field, and the nodal antiferromagnetic
�NAF� state, with nodal spins pointing in opposite directions.
In the later two states, the internodal spins become antiferro-
magnetically correlated. In the parameter space composed of
the magnetic field and exchange mismatch, all these phases
can be reached when the hopping amplitude is in the range
1� t / �J1��2, where J1 is assumed as the stronger exchange
coupling.

The thermodynamic properties of the above diamond
chain model can be obtained after the partial trace over the
degrees of freedom associated with the possible configura-
tions of the internodal spins. This procedure allows us to
map the thermodynamics of the original model on that of an
Ising chain with effective exchange coupling and external
field. Such mapping, known as a decoration-iteration
transformation,29 has been extensively used to investigate the
thermodynamic behavior of several decorated Ising systems.
This technique usually provides the exact solution for the
thermodynamic behavior, thus allowing for a deeper under-
standing of several magnetic phenomena.30–37 For the present
model, the mapping consists in defining the effective param-
eters through the identity

�
k

e−��k��i,�i+1� = �e�Jeff�i�i+1+�1/2��Heff��i+�i+1�, �2�

where �k��i ,�i+1� are the eigenvalues of the cell Hamil-
tonian for a given configuration of the nodal spins and �
=1 /kBT. The partition function of the diamond chain model
can be written as Z�T ,J1 ,J2 , t ,H�=�NZIsing�T ,Jeff ,Heff�, with

ZIsing�T,Jeff,Heff� = 	ekeff cosh heff

+ 
e2keff cosh2 heff − 2 sinh�2keff��1/2�N,

�3�

where keff=�Jeff, heff=�Heff, N is the number of diamond
cells, and periodic boundary conditions were assumed. By
considering all possible configurations of the nodal spins of a
unitary diamond cell, the set of equations resulting from Eq.
�2� can be solved to obtain the parameters �, Jeff, and Heff.
After a straightforward algebra, one can write the effective
field and exchange coupling in the following forms:

Heff = H +
1

2�
ln A −

1

2�
ln B , �4�

Jeff =
1

4�
ln A +

1

4�
ln B −

1

2�
ln C , �5�

where

A = e−��4�J1�−2��J�−2H� + e−��−4�J1�+2��J�+2H� + 2 + 2 cosh�2�t� ,

�6�

B = e−��−4�J1�+2��J�−2H� + e−��4�J1�−2��J�+2H� + 2 + 2 cosh�2�t� ,

�7�

C = 2 + 2 cosh�2�H� + 2 cosh
2���J�2 + t2� . �8�

III. THERMODYNAMIC BEHAVIOR OF THE EFFECTIVE
PARAMETERS

The thermodynamic behavior of the effective parameters
as a function of the applied magnetic field and temperature
can be analyzed in more detail by considering separately the
cases for which the ground state at H=0 is FRI and NAF. We
will consider the hopping amplitude in the range 1� t / �J1�
�2, for which the zero-field ground state can be controlled
by varying the exchange mismatch �J. The typical behavior
starting from a FRI zero-field ground state is depicted in Fig.
2, where we show the field dependence of the effective pa-
rameters at several temperatures. Four distinct regimes can
be identified, specially at low temperatures. Notice that the
effective field is negative at low temperatures and external
fields, which reflects the fact that the predominant ordering
of the nodal spins in the FRI state is antiparallel to the ex-
ternal field direction.

The thermodynamic behavior of the effective parameters
for the case of a NAF ground state at zero field is shown in
Fig. 3. Here, we also have four distinct regimes. The effec-
tive field is positive in all regimes. However, the effective
coupling becomes negative at low fields due to the antiferro-
magnetic ordering of the nodal spins in the NAF state. At
intermediate fields, the effective coupling becomes ferro-
magnetic, thus leading to the UPA ordering. For this ground
state, the effective field exhibits a plateau. At higher fields,
the SPA state is the most stable one and the chain becomes
effectively decoupled. The bounds of the four regimes for the
effective parameters at T=0 and their corresponding expres-
sions are summarized in Table I. These bounds identify the
regions of physical parameters with distinct sets of Hamil-
tonian eigenstates corresponding to the minimal cell energy
for each one of the three relevant configurations of the nodal
spins.

Based on the above analysis of the effective parameters,
we can provide a phase diagram, revealing a more detailed
structure than the one presented in Ref. 28. Besides the
bounds between the different ground states, we can also de-
limit the regimes for the field dependence of the effective
coupling. The complete phase diagram for the particular case
of t / �J1�=1.5 is shown in Fig. 4. For a given value of the
exchange mismatch, the effective coupling is field indepen-
dent at low fields. Then, it starts to grow until reaching a
maximum value. After that, it decreases until vanishing at a
specific field value, above which the chain becomes effec-
tively decoupled. It is important to mention that the bounds
between the distinct ground states take place when level
crossings involve the lower-energy state. However, the
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bounds between the distinct regimes of the effective param-
eters are determined by level crossings between excited
states.

IV. ADIABATIC MAGNETOCALORIC EFFECT

The existence of several possible ground states that can be
tuned by an external field makes the present model a good
candidate to exhibit an enhanced magnetocaloric effect. This
feature is mainly related to the expected increase in the mag-
netic entropy at the vicinity of the transition between these
states. Although the present one-dimensional model has only
zero-temperature transitions, well-defined crossovers can still
be fairly identified at finite temperatures.

The magnetic cooling is usually performed through a pro-
cess of adiabatic demagnetization. During this process, the
external magnetic field is adiabatically decreased, thus keep-
ing the magnetic entropy constant. In Fig. 5, we show isoen-

tropy curves in the T�H parameter space for two represen-
tative cases. In Fig. 5�a�, we have chosen an exchange
mismatch for which the zero-field ground state is FRI. Ac-
cording to the phase diagram, there is a single critical field in
this case, corresponding to the transition between the FRI
and the SPA states. This critical field can be clearly identified
in the isoentropy diagram. In Fig. 5�b�, the zero-field ground
state is NAF. For this case, two critical fields are present,
delimiting the transitions between the NAF and UPA states
as well as between the UPA and SPA states. The largest adia-
batic variation in the temperature is indeed observed at the
vicinity of the critical fields. Large adiabatic cooling rates are
achieved when the magnetic field approaches the critical
points from above, while maximum heating rates take place
when the field is further reduced below the critical points.
This is the scenario that favors the use of frustrated magnetic
materials as active substances to perform refrigerator cycles.
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FIG. 2. Field dependence of the �a� effective exchange coupling
and �b� effective magnetic field for different temperatures. Here, we
used t / �J1�=1.5 and ��J� / �J1�=0.2 for which the zero-field ground
state is FRI. Four distinct regimes for the effective parameters are
clearly seen at low temperatures. The negative values of the effec-
tive field reflect the fact that the nodal spins align contrary to the
external field in the FRI ground state. The chain becomes effec-
tively decoupled at high magnetic fields.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

H/|J
1
|

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

J ef
f/|J

1|

|∆J|/|J
1
| = 0.8

t/|J
1
| = 1.5

k
B
T/|J

1
| = 0.0

0.3
0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

H/|J
1
|

0.0

0.2

0.4

0.6

0.8

1.0

H
ef

f/|J
1|

|∆J|/|J
1
| = 0.8

t/|J
1
| = 1.5

k
B
T/|J

1
| = 0.0

0.30.5
1.0

1.5

(b)

(a)

FIG. 3. Field dependence of the �a� effective exchange coupling
and �b� effective magnetic field for different temperatures. Here, we
used t / �J1�=1.5 and ��J� / �J1�=0.8 for which the zero-field ground
state is NAF. Four distinct regimes for the effective parameters are
still clearly seen at low temperatures. The negative values of the
effective exchange coupling reflect the antiferromagnetic correla-
tion between the nodal spins in the NAF ground state. The chain
becomes effectively decoupled in the SPA ground state. The plateau
in the effective field is associated with the fact that the competing
UPA and FRI states have the same magnetic moment per unit cell.
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Following a particular isoentropy line, we can find two
typical behaviors as the field intensity is decreased from val-
ues above the upper critical field. If the initial temperature
and field values correspond to a thermodynamic state with
entropy well above the residual entropy at the upper critical
field Sres=kB ln 2, corresponding to the degenerate FRI and
SPA 
Fig. 5�a�� or UPA and SPA 
Fig. 5�b�� states, the tem-
perature has an overall decrease when the external magnetic
field is decreased. However, the temperature reduction that
can be attained is limited in this case and the isoentropy lines
develop a plateau at low fields. On the other hand, when the
initial state has an entropy smaller than kB ln 2, the tempera-

ture can be reduced without a minimal bound. In this case,
the temperature decrease is monotonous if the initial field is
above the upper critical field. The temperature dependence
on the external field becomes nonmonotonous when the ini-
tial field is below its upper critical value. In the case where
the zero-field ground state is NAF 
Fig. 5�b��, a second
isoentropy line with Sres=kB ln�1+5� /2, corresponding to
the degenerate NAF and UPA states,28,38,39 delimits the range
of entropy values for which zero temperature can be reached
by adiabatic cooling. For entropies smaller than kB ln�1
+5� /2, zero-temperature adiabatic cooling can be reached
as one approaches the field values corresponding to both
NAF/UPA and UPA/SPA transitions. In the range kB ln�1
+5� /2�S�kB ln 2 zero-temperature cooling is only reach-
able approaching the UPA/SPA transition. For S�kB ln 2,
zero temperature cannot be reached by adiabatic cooling.
The maximum rate of adiabatic cooling at low temperatures
is achieved either along the isoentropy line S=kB ln 2 at the
upper critical field or at S=kB ln�1+5� /2 at the lower criti-
cal field.

The adiabatic magnetocaloric rate �T /�H �S gives a more
quantitative description of the enhanced efficiency of the
cooling process in the vicinity of the critical fields. In Fig. 6,
we report the field dependence of the magnetocaloric rate for
different temperatures for the case of a FRI zero-field ground
state. The structure of valley peak near the critical field
clearly signals the enhanced magnetocaloric effect at low
temperatures. Such structure is smoothened by thermal fluc-
tuations but can still be identified up to temperatures of the
order of kBT / �J1�=1. For much larger temperatures, the mag-
netocaloric rate displays only a slow dependence on H.
Therefore, no significant effect due to the underlying frus-
trated interactions persists. The magnetocaloric rate for the
case of a NAF zero-field ground state is shown in Fig. 7.
Here, there are two peak-valley structures that can be iden-
tified at very low temperatures. The one at low magnetic
fields corresponds to the transition between the NAF and the
UPA states. The enhancing of the magnetocaloric effect close
to this transition is quite sensitive to thermal fluctuations,
becoming strongly suppressed even at intermediate tempera-
tures. On the other hand, the signal associated with the UPA

TABLE I. Distinct regimes for the effective exchange coupling and field at T=0 and their corresponding
expressions within each regime. For low magnetic fields H	 �2�J1�−��J�−t�, the expressions for the effective
parameters depend on the sign of 
=2�J1�− ��J�− t.

External field regime Effective coupling Effective field

H	 �
�
�
�0� Jeff=2�J1�− ��J�−��J�2+ t2 �
�0� Heff=−H

�
	0� Jeff= t−��J�2+ t2 �
	0� Heff= +H

�
�	H	��J�2+ t2 Jeff = �J1� +
t

2
−

��J�
2

− ��J�2 + t2 +
H

2
Heff= t−2�J1�+ ��J�

��J�2+ t2	H	2�J1�− ��J�+ t Jeff = �J1� +
t

2
−

��J�
2

−
H

2
Heff= t−2�J1�+ ��J�

H�2�J1�− ��J�+ t Jeff=0 Heff=−4�J1�+2��J�+H
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FIG. 4. �Color online� Ground-state phase diagram for t / �J1�
=1.5. The dashed line delimits the different regimes for the field
dependence of the effective exchange coupling. The analytic ex-
pressions for these lines are reported in Table I. The solid lines are
the bounds between distinct ground states.
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to SPA transition is more robust against thermal fluctuations.
In comparison with the adiabatic magnetocaloric cooling rate
of paramagnetic salts, which is simply given by �T /�H �S
=T /H, the maximum cooling rate at the vicinity of the criti-
cal field is about 1 order of magnitude larger at low tempera-
tures.

V. SUMMARY AND CONCLUSIONS

In summary, we showed that the recently introduced
model of a kinetically frustrated diamond chain can exhibit
an enhanced adiabatic magnetocaloric rate. The model con-

sists of an AB2 chain with anisotropic antiferromagnetic cou-
plings between sites of different species. Further, a kinetic
term allows the hopping of the internodal spins between the
inner sites of each unit cell. Such hopping mechanism, asso-
ciated with the Pauli exclusion principle, builds up antiferro-
magnetic correlations between the spins of the internodal
sites which compete with the parallel correlation induced by

(b)

(a)

FIG. 5. �Color online� Curves of isoentropy in the T�H param-
eter space for the particular case of hopping amplitude t / �J1�=1.5.
�a� Exchange mismatch ��J� / �J1�=0.2 for which the zero-field
ground state is FRI. A single critical field is present. �b� Exchange
mismatch ��J� / �J1�=0.8 for which the zero-field ground state is
NAF. This case presents two critical fields. The isoentropy lines S
=kB ln 2 �thick solid� and kB ln�1+5� /2�S�kB ln 2 �thick
dashed� delimit distinct regimes for adiabatic cooling �see text�.
Maximum adiabatic cooling rates �slope of the isoentropy curves�
take place near the critical fields at these special entropy values.
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FIG. 6. Adiabatic magnetocaloric rate �T /�H �S as a function of
the external field for representative values of the temperature. For
these plots, we used t / �J1�=1.5 and ��J� / �J1�=0.2 for which the
zero-field ground state is FRI. The valley-peak structure signals the
enhanced magnetocaloric effect close to the FRI to SPA transition.
The signal is suppressed by thermal fluctuations.
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FIG. 7. Adiabatic magnetocaloric rate �T /�H �S as a function of
the external field for representative values of the temperature. For
these plots we used t / �J1�=1.5 and ��J� / �J1�=0.8 for which the
zero-field ground state is NAF. The valley-peak structures signal the
enhanced magnetocaloric effect close to the NAF to UPA and UPA
to SPA transitions. The signal corresponding to the NAF to UPA
transition is more sensitive to thermal fluctuations than the signal
from the UPA to SPA transition.
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the coupling with the nodal spins. The model has four pos-
sible ground states �SPA, UPA, FRI, and NAF� which can be
tuned by varying the exchange mismatch, the hopping am-
plitude, and the applied magnetic field. The thermodynamic
of this model has an exact solution through a decoration-
iteration transformation that maps its partition function on
that of an Ising chain with effective exchange coupling and
magnetic field. We analyzed the thermodynamic behavior of
the effective parameters. We showed that four regimes can be
identified which differ from each other by the field depen-
dence of the effective coupling at the ground state. We pro-
vided analytic expressions for the bounds of these regimes
which complete the characterization of the ground-state
phase diagram.

The possibility of tuning the ground-state configuration
using the external magnetic field means that the ground state
becomes degenerated at some critical fields. This scenario
has been pointed in the literature as favorable for achieving
an enhanced magnetocaloric effect. We explored such effect
on the present model by computing the isoentropy curves of
adiabatic demagnetization as well as the adiabatic magneto-
caloric cooling rate. Our results showed clearly an enhanced

magnetocaloric effect. By choosing the initial thermody-
namic state of the system to have an entropy smaller than the
residual entropy at the critical fields for which the ground
state is degenerated, we obtained that the temperature can be
strongly reduced during a process of adiabatic demagnetiza-
tion. Further, we showed that the magnetocaloric rate pre-
sents well-defined structures of valley peak at the vicinity of
the critical fields, a welcome feature for the development of
refrigerator cycles using magnetic materials as the active
substance. Although the effect in the vicinity of the NAF to
UPA transition is strongly suppressed by thermal fluctua-
tions, the corresponding structure due to the UPA to SPA
transition is quite robust with the valley-peak signal being
well defined even at intermediate temperatures.
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