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2Departamento de F́ısica, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil

We show that a qubit transfer protocol can be realized through a flat band hosted by a disordered
XX spin-1/2 diamond chain. In the absence of disorder, the transmission becomes impossible due
to the compact localized states forming the flat band. When off-diagonal disorder is considered,
the degeneracy of the band is preserved but the associated states are no longer confined to the
unit cells. By perturbatively coupling the sender and receiver to the flat band, we derive a general
effective Hamiltonian resembling a star network model with two hubs. The effective couplings
correspond to wavefunctions associated with the flat-band modes. Specific relationships between
these parameters define the quality of the quantum-state transfer which, in turn, are related to the
degree of localization in the flat band. Our findings establish a framework for further studies of flat
bands in the context of quantum communication.

I. INTRODUCTION

Progress in quantum information processing have led
us to the so-called noisy-intermediate-scale quantum era
[1]. This means that the technology for assembling
dozens of qubits to perform simple and proof-of-principle
tasks is available [2]. Yet, practical issues persist such as
faulty quantum gates and limited control over the pro-
cessing units. A prominent source of errors, besides deco-
herence, comes from the manufacturing process of quan-
tum devices. For example, the parameters of a qubit
network – such as coupling strengths and local transition
energies – might deviate from their original design, cul-
minating in disorder. This can consequently lead to An-
derson localization of quantum information [3, 4]. Since
disorder cannot be fully suppressed, it is important to
consider its influence on the quantum dynamics.

Quantum-state transfer (QST) and entanglement dis-
tribution are essential tasks to be performed on quantum
networks [5]. A quantum communication channel can be
set by a collection of spin-1/2 particles acting as qubits
and linked via engineered exchange interactions. An ar-
bitrary qubit state prepared at one end of a 1D chain
can be transmitted to the other end by the unitary evo-
lution of the Hamiltonian. This idea was introduced by
Bose in Ref. [6] and many other schemes have since been
proposed [7–24].

A particular class of spin chains for QST relies on a
complete engineering of their couplings. This approach
results in a linear spectrum that supports end-to-end per-
fect state transfer in arrays of any size [7, 8]. High-fidelity
QST protocols can also be designed with lower engineer-
ing costs by tuning the boundaries of a homogeneous spin
chain [10, 11, 17]. Other methods involve the application
of strong local magnetic fields in order to effectively de-
couple the sender and receiver spins from the channel
[19].
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Under the influence of disorder, the overall perfor-
mance of any QST scheme is expected to be reduced to
some degree. [25–36]. Chains featuring modified bound-
ary couplings are more robust against static noise [23, 31].
When the communicating parties are perturbatively cou-
pled to the channel, the conditions for an end-to-end ef-
fective interaction become more flexible because most of
the channel modes barely interfere. As such, it is possi-
ble to tune the end spins in a way that shields the dy-
namics from the influence of the strongly localized states
[37, 38]. Alternatively, one can harness topological pro-
tection against disorder [22, 36].

In this paper, we go beyond the usual 1D schemes
to explore a QST protocol on a diamond-like spin-1/2
chain [see Fig. 1] described by the XX model. Disor-
dered quasi-1D materials, such as nanowires, have been
shown to display peculiar strongly correlated phenom-
ena [39–41]. Many quasi-1D networks are known to sup-
port flat bands [42–44]. These are dispersionless Bloch
bands hosting macroscopic degeneracy, diverging density
of states, zero-group velocity, and infinite effective mass
[45]. A rich variety of transport regimes, including exotic
Anderson transitions [46, 47], can emerge, specially when
the system is under the influence of perturbations that
slightly lift the degeneracy [41, 48–53].

Here we consider a pair of communicating spins weakly
coupled to a diamond channel that hosts a flat band. In
the ordered case, the band hosts a set of compact local-
ized states, each restricted to one unit cell of the diamond
lattice [43, 44]. When off-diagonal disorder is present,
the flat band is preserved but is formed by a distinct set
of eigenstates. These modes can be extended and thus
mediate QST between the end cells. Remarkably, we
observe that the competition between the (topological)
compact localization and Anderson localization benefits
the QST. Furthermore, an effective model is derived to
explain that property. By solving it analytically, we high-
light the key ingredients responsible for achieving better
fidelities. Our findings can be readily extended to other
flat band bipartite lattices.
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FIG. 1. Sketch of the QST scheme. A quasi-1D diamond
lattice functions as the channel. Colored sites with alternating
signs inside the unit cell (dashed square) depict the pattern
of the compact localized states [43, 44]. These occur in the

ordered case and have the form |v(n)
0 ⟩ = 1√

2
(1, 0,−1) for every

cell n. Together, they compose a N -fold degenerate flat band
at E = 0. Any amount of coupling (off-diagonal) disorder
maintains the degeneracy given the bipartite nature of the
diamond lattice. On the other hand, the spatial configuration
of the flat-band modes will be modified due to their coupling
with the dispersive modes. As a consequence, quantum-state
transmission between spins S and R can be achieved.

II. MODEL AND FLAT-BAND STRUCTURE

We consider a quantum channel that consists of 3N
spin-1/2 particles arranged in a diamond-like configura-
tion with open boundary conditions as shown in Fig. 1.
They interact through a XX Hamiltonian of the form
(ℏ = 1)

Hch =
1

2

∑
⟨i,j⟩

Jij(σ̂
x
i σ̂

x
j + σ̂y

i σ̂
y
j ), (1)

where σ̂x,y
i are the usual Pauli operators for spin i and

Jij is the nearest-neighbour interaction strength between
spins i and j. Herein, it is more convenient to visual-
ize the channel as being composed of N coupled vertical
trimer cells. In the single-excitation sector, the Hamilto-
nian reads

Hch =

N∑
n=1

(J1,n|an⟩⟨bn|+ J2,n|bn⟩⟨cn|)

+

N−1∑
n=1

(J ′
1,n|an⟩⟨bn+1|+ J ′

2,n|cn⟩⟨bn+1|) + h.c.,

(2)

where |ℓn⟩ denotes a single spin flipped in the n-th cell
at leg ℓ ∈ {a, b, c}.
Let us now see how the flat band emerges. Each

cell contributes with the local eigenstates |v(n)0 ⟩ =
1
λn

(J2,n, 0,−J1,n) and |v(n)±1 ⟩ = 1
λn

√
2
(J1,n,±λn, J2,n),

with corresponding eigenvalues 0 and ±λn, where λn =

√
J2
1,n + J2

2,n. Within this basis set, transitions between

different cells are given by:

⟨v(n+1)
ν |Hch|v(n)±1 ⟩ =

ν

2λn

(
J1,nJ

′
1,n + J2,nJ

′
2,n

)
, (3)

⟨v(n+1)
ν |Hch|v(n)0 ⟩ = ν√

2λn

(
J2,nJ

′
1,n − J1,nJ

′
2,n

)
, (4)

⟨v(n+1)
0 |Hch|v(n)0 ⟩ = 0, (5)

where ν = ±1.
In the ordered case (Ji,n = J ′

i,n = J) a quick look at

the expressions above tells us that |v(n)0 ⟩ are eigenstates
of Hch with the same energy E = 0. Indeed, they form
a complete orthogonal basis at the center of the band.

Given each |v(n)0 ⟩ is spatially confined to the n-th unit
cell, they are classified as compact localized states [43,
44]. Therefore, a diamond channel with N cells hosts a
N -fold degenerate flat band at E = 0.
The ordered flat band cannot mediate a resonant QST

[11] between two external spins weakly coupled to the
outermost cells (see Fig. 1). The compact localized

states |v(n)0 ⟩ forbid excitation transport between any pair

of cells. This scenario changes, however, when |v(n)0 ⟩ are
no longer eigenstates of Hch. Any disorder in the channel
will promote transitions between those and the dispersive

modes |v(n)ν ⟩ [Eq. (4)]. In this work, instead of devising
an engineering scheme for Hch we will see how random
fluctuations in the spin-spin couplings can assist a QST
protocol.
Flat-band diamond lattices have been studied in the

presence of diagonal as well of off-diagonal disorder [41,
50, 54]. In the weak disorder regime, a general result is
that the mixing between flat-band states and the others
leads to a scaling of the localization length of the form
ξ ∼ W−γ at the flat band, with W being the disorder
width and the exponent γ depending on the flat band
class [50, 54].
One property that deserves particular attention here is

the bipartite nature of the diamond lattice. This means
that we can group the N states {|bn⟩} into one sublattice
and the remaining 2N states {|an⟩, |cn⟩} into another.
A known theorem [55, 56] states that bipartite lattices
featuring only off-diagonal disorder sustains at least M
linearly independent states at E = 0, where M is the
difference between the number of sites of both sublattices.
In addition, these M states have no amplitude on the
minority sublattice. For the diamond lattice, M = N .
The flat band is thereby preserved if we set Ji,n →

Ji,n(1 + δi,n) and J ′
i,n → J ′

i,n(1 + δ′i,n), where δi,n, δ
′
i,n

are uncorrelated random numbers uniformly distributed
in [−W/2,W/2]. However, note that while the N -fold
degeneracy is maintained at E = 0, its corresponding

modes are no longer |v(n)0 ⟩. Instead, we get another set of
flat-band eigenstates |EFB,k⟩ which involves linear com-

binations of |v(n)0 ⟩ and |v(n)ν ⟩ but still have no amplitude
on |bn⟩ [55, 56]. Note that as our lattice is finite, there
will always be one compact localized state left for the end
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cell, |v(N)
0 ⟩. Its contribution is negligible for our purposes.

In the following section we show how the disordered flat
band can mediate a QST protocol between the outermost
cells.

III. RESULTS

A. Effective Hamiltonian

Let us now add two extra spins to the diamond chan-
nel, one at each end, to play the role of sender (S) and
receiver (R). As shown in Fig. 1, they are coupled to the
sites |a1⟩ and |aN ⟩, respectively. The full Hamiltonian of
the system is now given by Hch+HI , with the interaction
Hamiltonian

HI = g(|S⟩⟨a1|+ |R⟩⟨aN |+ h.c.). (6)

Here we assume that g is much smaller than the gap be-
tween the flat band and the non-zero energy states. The
dispersion relation of the delocalized states for an infinite
ordered diamond lattice reads E(k) = ±2J

√
1 + cos k,

with k being the typical wavenumber [50]. Then, the
energy of the next non-zero energy states decreases as
∼ N−1 and so g ≪ JN−1. This ensures that only the
flat-band modes will contribute to the QST dynamics.

The perturbative coupling set by g delivers a first-
order resonant interaction involving |S⟩, |EFB,k⟩ (k =
1, . . . , N), and |R⟩. By generalizing the framework of
single-mode resonant QST proposed in [11], we obtain
the effective Hamiltonian

Heff = g

N∑
k=1

(µ1,k|S⟩⟨EFB,k|+ µN,k|R⟩⟨EFB,k|+ h.c.),

(7)
where the wavefunctions µn,k = ⟨an|EFB,k⟩ are now ef-
fective couplings. Note that the states |c1⟩ and |cN ⟩ can
also host the communicating parties without loss of gen-
erality. The states |bn⟩ have null amplitudes in the flat
band and therefore are not suited for the QST protocol.

In matrix form, the Hamiltonian above reads

Heff = g



0 0 µ1,1 µ1,2 · · · µ1,N

0 0 µN,1 µN,2 · · · µN,N

µ1,1 µN,1 0 0
...

µ1,2 µN,2 0 0
...

...
. . .

µ1,N µN,N · · · 0


. (8)

The effective QST model can be seen as a disordered
star network with two hubs. We remark that the disor-
der featuring in the parameters µn,k traces back to the
fluctuations in Ji,n and J ′

i,n, with the constraint that

ηn =
∑

k |µn,k|2 ≤ 1. The presence of disorder generally
lead to η1 ̸= ηN . We will see shortly that this population
imbalance and the degree of localization of the flat band
modes dictate the quality of the QST.

B. Quantum-state transfer via flat bands

We now analyze the transfer of an arbitrary qubit state
|ψ⟩ = α|0S⟩+ β|1S⟩ prepared at site S (see Fig. 1). The
remaining spins are set in the ferromagnetic ground state
such that |Ψ(t = 0)⟩ = |ψ⟩|0102 · · · 03N0R⟩. To evaluate
the QST performance at site R, we compute the input-
averaged (over all α and β) transfer fidelity [6]:

F (t) =
1

2
+

|fR(t)|
3

+
|fR(t)|2

6
. (9)

Hence, it suffices to track the evolution of the transition
amplitude fR(t) = ⟨R|U(t)|S⟩ over time, with U(t) =
e−iHt being the quantum time evolution operator.
We now turn our attention back to the effective two-

hub star Hamiltonian [Eq. (8)] to obtain an expression
for fR(t). Note that it embodies another bipartite net-
work featuring N nodes in one sublattice (the flat band
itself) and two nodes (|S⟩ and |R⟩) in the other. As such,
by symmetry arguments [55, 56], the spectrum is com-
posed of the set of eigenvalues {±ϵ1,±ϵ2, {0}N−2}. The
N − 2 states at level E = 0 do not have amplitude on
the minority sublattice and thus will not contribute to
the QST protocol. The remaining four eigenstates can
be written as

|ϵ±1 ⟩ =
1√
2
(xS |S⟩+ xR|R⟩)±

1√
2
|ϕ1⟩, (10)

|ϵ±2 ⟩ =
1√
2
(yS |S⟩+ yR|R⟩)±

1√
2
|ϕ2⟩, (11)

where |ϕi⟩ are linear combinations of the states |EFB,k⟩,
satisfying ⟨ϕ1|ϕ2⟩ = 0. In each of those eigenstates the
probability to find the excitation in either of the sublat-
tices is 1/2. This is another remarkable symmetry prop-
erty of bipartite networks [57]. As {|ϵ±1 ⟩, |ϵ

±
2 ⟩} must be

an orthonormal set, we also have that yS = −x∗R and
yR = x∗S , with |xR|2 + |xS |2 = 1.
Now, expanding U(t) = e−iHt we obtain

fR(t) = x∗SxR(cos ϵ1t− cos ϵ2t)

= −2x∗SxR

[
sin

(
ϵ1 + ϵ2

2
t

)
sin

(
ϵ1 − ϵ2

2
t

)]
.

(12)

The primary QST timescale will be dictated by the slower
sine function that depends on the gap δϵ = ϵ1 − ϵ2.
The transition amplitude |fR(t)| reaches its maximum
at times τ = mπ/δϵ, where m = nδϵ/(ϵ1 + ϵ2), with n
and m being odd integers. (Strictly, m is an integer only
if δϵ/(ϵ1 + ϵ2) is rational.) Given the QST time τ ∝ g−1

and recalling that g ≪ JN−1, in order to validate the ef-
fective Hamiltonian, then τ is typically larger than O(N).
The maximum amplitude that fR(t) can achieve is

related to a correlation parameter CS,R = 2|x∗SxR| =
4|⟨ϵ±i |S⟩⟨R|ϵ

±
i ⟩|, which ranges from 0 to 1. It can thus

be used to assess the quality of the QST. Figure 2 de-
picts the time evolution of the transition amplitude dur-
ing a QST cycle as obtained by exact diagonalization of



4

FIG. 2. Time evolution of the transition amplitude |fR(t)|.
The solid curve is obtained by exact numerical diagonalization
of the full Hamiltonian Hch +HI for N = 10 cells, g = 0.01J ,
and W = 0.2J . Only one (typical) disorder realization is
shown. The dashed curve represents CS,R| sin(δϵt/2)|, which
is the slow oscillating part of the analytical expression for
fR(t) in Eq. (12). Both CS,R and δϵ are obtained numerically.
Time is expressed in units of the QST time τ = π/δϵ.

the full Hamiltonian for a single disorder sample. The
wave envelope given by CS,R| sin(δϵt/2)| is also plotted
for comparison.

A perfect QST [within the effective framework of Eq.
(8)], with F (τ) = 1 [Eq. (9)], can only be achieved pro-

vided CS,R = 1, which implies |xS | = |xR| = 1/
√
2. With

regard to the effective couplings µn,k, a particular con-
dition must be fulfilled. To see this, we can solve the
eigenvalue equation Heff |ϵ±i ⟩ = ±ϵi|ϵ±i ⟩ analytically to
obtain:

ϵ1,2 = g

[
1

2

(
A±

√
A2 − 4B

)]1/2
, (13)

xS =

(
1− Λ2

(ϵ̃i
2 − ηN )2 + Λ2

)1/2

, (14)

xR =

√
2Λ

ϵ̃i
2 − ηN

xS , (15)

where A = η1 + ηN , B = η1ηN −Λ2, Λ =
∑

k(µ1,kµN,k),
and ϵ̃i = ϵi/g. Hence, the correlation parameter can be

written as CS,R = 2/
√
4 + ∆2, where ∆ = (η1 − ηN )/Λ.

We immediately see that CS,R = 1 whenever η1 = ηN (as
long as Λ ̸= 0). In such a case, the fluctuations in the
parameters µn,k are irrelevant. This is remarkable from
the standpoint of the effective Hamiltonian in Eq. (8). It
means that in principle one can realize an almost perfect
QST despite any level of disorder in µn,k by tuning a
single parameter.

Here, we cannot manipulate µn,k directly, though.
These parameters are attached to the flat-band modes
of the physical lattice. Our goal now is to harness the
randomness present in the exchange couplings Ji,n and
J ′
i,n. By doing so, we generally obtain η1 ̸= ηN and

then ∆ → 0 is required to attain CS,R → 1. Note
that ∆ is inversely proportional to the parameter |Λ| =

(a)

(b)

FIG. 3. Probability density functions of the parameter
|Λ| = |

∑
k(µ1,kµN,k)| evaluated numerically via exact diago-

nalization of Hch considering (a) N = 20 and (b) N = 40 cells
for 103 independent disorder samples. The disorder widths W
considered in both panels are 0.2J , 0.3J , and 0.4J .

FIG. 4. Probability density functions of |Λ| =
|
∑

k(µ1,kµN,k)| for the weak disorder regime. Each distri-
bution is obtained for 103 independent disorder samples con-
sidering N = 20. The disorder widths W are indicated by
each curve.

|
∑

k(µ1,kµN,k)|. The latter scans the whole flat band
modes via their amplitudes on states |a1⟩ and |aN ⟩ (the
ones to which spins S and R are coupled). In a disordered
system, we expect that the product of two wavefunctions
such as µ1,kµN,k be typically close to zero, especially for
spins residing at distant locations.

In Fig. 3 we show probability density functions (PDFs)
of |Λ| for N = 20, 40 cells and selected values of the dis-
order width W . Indeed, the distributions become more
peaked around zero as W grows. This trend is more se-
vere for larger system sizes [Fig. 3(b)]. Despite the cor-
relation CS,R is a function of the ratio ∆ = (η1 − ηN )/Λ,
the factor Λ is the one that counts as far as N is con-
cerned. This can be observed from the fact that ηn is a
local quantity.

Things are different, however, as W → 0. In this
regime, we observe the opposite behavior for Λ. The
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FIG. 5. Energy gap δϵ/g = (ϵ1 − ϵ2)/g versus the disorder
width W for N = 10 (blue squares), N = 20 (green circles),
and N = 40 (red triangles). Data are obtained via exact
numerical diagonalization of the full Hamiltonian Hch + HI ,
considering g = 0.01J , and averaged over 103 independent re-
alizations of disorder. Error bars are the corresponding mean
absolute deviations.

increasing of W actually benefits the formation of CS,R.
The PDF for very low disorder widths is shown in Fig. 4.
Such a reverse trend can be understood as a reminiscent
influence of the compact localized states, to which Λ = 0,
as we depart from W = 0. As the disorder increases, the
flat-band modes become strongly localized again, but are
no longer restricted to each cell. Instead, their localiza-
tion length scales as ξ ∼ W−γ [50, 54]. It is between
those two regimes that the QST will occur.

C. Protocol performance

Now that all the relevant quantities that govern the
speed and quality of the QST have been presented, we
are ready to the test its performance against W .

Any disorder induces fluctuations in the energy spec-
trum and affects the transfer time τ ∝ δϵ−1. In Fig. 5
we show how the gap δϵ = ϵ1−ϵ2 (in units of g) responds
toW . It grows roughly linear withW , not being affected
by the number of cells N . Another caveat to the limit
W → 0 is that a vanishing gap implies in a extremely
slow QST, which is not a desirable feature. Therefore,
disorder is needed to bypass the compact localized states
of the flat band and also to make the QST faster.

Because the fluctuations in the gap increase with W ,
we track the QST fidelity over a given time window (in-
stead of a specific time). Let us define Fmax = max{F (t)}
as the maximum fidelity achieved for t ∈ [0, tmax], where
tmax = 20π/g. Given τ = mπ/δϵ, we remark that the
value of tmax corresponds to m = 1 and δϵ/g = 0.05.
In this way, the QST fidelity for disorder widths slightly
below W ≈ 0.2J (cf. Fig. 5) may be underestimated.
For W > 0.2J , tmax is enough for the first QST cycle to
occur [see Eq. (12)].

The results for the QST fidelity are displayed in Fig.
6(a) considering N = 10 and N = 20 cells and fixed
g = 0.01J . Note that this value of g is compatible with

M
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um
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el
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y

(a)

(b)

FIG. 6. (a) Maximum fidelity Fmax = max{F (t)}, evaluated
for t ∈ [0, 20π/g], against W . Blue squares (green circles) de-
note the data for N = 10 (N = 20), obtained via exact numer-
ical diagonalization of the full Hamiltonian with g = 0.01J .
The dotted horizontal bar indicates the fidelity threshold as-
sociated to classical transmission, F = 2/3. (b) Correlation
between spins S and R, CS,R, also obtained for g = 0.01J .
The inset shows the same measure for smaller values of W .
(The first point lies at W = 0.01J in the main figures.) Both
quantities are averaged over 103 independent realizations of
disorder. Vertical error bars represent the mean absolute de-
viations.

the system sizes considered. All the elements discussed
so far are manifested through the fidelity performances.
Indeed, the overall QST quality declines in the larger sys-
tem size. This have been predicted in the analysis of the
parameter Λ (Fig. 3). Yet, it is possible to reach fidelities
above the classical threshold of 2/3 [6, 58] at intermedi-
ate disorder levels. Figure 7 displays histograms of the
maximum fidelities for N = 10 and some selected values
of W .

We remark that the poor performances associated to
the lower values ofW in Fig. 6(a) is a consequence of the
chosen time interval. To confirm this, Fig. 6(b) shows
the behavior of correlation CS,R against W . As we have
seen, CS,R ultimately determines the quality of the QST.
Therefore, in this case higher fidelities can be achieved
at times t > tmax. But if we were to consider disorder
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(a) 

(b) 

(c) 

FIG. 7. Histograms of the maximum QST fidelities based
on 103 independent realizations of disorder for g = 0.01J ,
N = 10 cells, (a) W = 0.01J , (b) W = 0.2J , and (c) W =
0.4J . Dotted vertical bars represent the fidelity threshold for
classical transmission, F = 2/3.

levels W ≪ 0.001J [inset of Fig. 6(b)], then the QST
would be unfeasible because of the reverse localization
trend discussed earlier (see Fig 4). Indeed, CS,R must
vanish as W → 0 so as to conform with the development
of the compact localized states.

IV. CONCLUDING REMARKS

We studied a resonant QST through a flat band hosted
by a disordered diamond lattice. In particular, off-

diagonal disorder was considered for preserving the flat
band due to the bipartite topology of the lattice. Our
findings revealed that the QST protocol yields good fi-
delities when a certain amount of disorder is present. The
underlying phenomenon is a transition of the flat-band
modes from compact localization, when W = 0, to An-
derson localization as W increases [50, 54]. For interme-
diate levels of disorder, those modes can jointly sustain
significant amplitudes on distant cells. While we con-
sidered a simple uniform distribution for the disorder,
similar results are obtained for uncorrelated Gaussian-
distributed disorder (which is a more realistic situation).

We also derived and solved an effective Hamiltonian
[Eq. (8)] that applies for a pair of sites perturbatively
coupled to any flat-band bipartite lattice. The model re-
sembles a star network with two hubs and disordered cou-
plings associated to the flat-band wavefunctions. By de-
riving analytical expressions for the relevant eigenstates,
we were able to identify the parameters that control the
QST. Interestingly, if η1 = ηN then an almost perfect
QST can occur for very small g despite the level of fluc-
tuations associated to the effective couplings µn,k.

The effective model we addressed is a powerful tool
to study quantum transport via flat bands. It may be
explored on its own as a synthetic network aiming for the
remarkable relationship between the couplings. We hope
that our results encourage further research on quantum
communication in other classes of flat bands [43, 54].
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