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Emergent nonlinear phenomena in discrete-time quantum walks
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Quantum walks are important tools for the development of quantum algorithms and carrying out quantum
simulations. Recent interest in nonlinear discrete-time quantum walks aims to use it as a shortcut through
dynamical regimes hard to obtain using current methods. We introduce a model featuring a modified conditional
shift operator to carry dependence on the local occupation probability with a given strength we are able to control.
It accounts for a third-order nonlinear contribution which is found in many physical contexts. We find a rich set
of dynamical profiles, including solitonlike propagation, self-trapping, and chaos, all these arising from rather
simple rules. Our tool set goes beyond unitary transformations, thus broadening the possibilities for controlling
quantum dynamics.
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I. INTRODUCTION

Quantum walks are a valuable tool set in the field of
quantum information processing [1–3]. More than being just
the quantum-mechanical counterpart of the well-known ran-
dom walk problem, they can be applied for quantum simu-
lation of, e.g., quantum phase transitions [4,5], topological
phases [6–8], and even high-energy physics [9], as well as
for designing quantum algorithms [10,11]. Moreover, it was
shown that both the continuous- and discrete-time versions of
the quantum walk allow for universal quantum computation
[12,13]. There is even more to it, as equivalencies between
quantum walks and relativistic quantum mechanics have been
pointed out under proper continuum limits [14–16].

In the discrete-time quantum walk (DTQW) framework
[1], the walker is augmented with a set of internal states
whereupon a so-called coin operator is defined in order to
shuffle (that is, to generate superpositions) them. Following
this, a second ingredient, namely, the conditional shift opera-
tor, is needed to spread them out in space, wherein transitions
from one site to another depend on the internal (coin) state of
the walker. This two-step procedure is then repeated as many
times as it takes to obtain the desired effect. Experimental re-
alizations of DTQWs have been reported on superconducting
systems [6], NMR [17], ion traps [18], ultracold atoms in opti-
cal lattices [19], and photonic devices [7,8,20], to name a few.

In essence, quantum walks can be viewed as a kind quan-
tum cellular automata [14,21–24], where one assigns a bunch
of complex-valued probability amplitudes and designs proper
update procedures following the rules of quantum mechanics.
Instead of coming up with a Hamiltonian model for a system
of interest, the DTQW approach thus offers a different route
to explore the Hilbert space. From that point of view, there are
endless possibilities for what DTQWs are able to realize, and
this is why they are being so largely explored.
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A paramount goal is then to reach to ubiquitous dynamical
regimes never once attained, if not impossible to, using current
methods. A perfect example can be found in a recent work
[25], where the authors approached the problem of wave-
packet spreading in a nonlinear and disordered medium using
a DTQW model and managed to outperform previous com-
putational efforts over about four decades, thereby suggesting
that the subdiffusion process occurring due to the interplay
between chaotic dynamics and Anderson-localized modes
persists asymptotically. Such a remarkable performance of the
DTQW is due to its very discrete nature, for a single evolution
step has enough information to create shortcuts in the Hilbert
space, when comparing to the natural (Hamiltonian-driven)
continuous evolution of an equivalent quantum system, possi-
bly demanding longer coherence times or being computation-
ally hard to solve numerically.

The results mentioned above make a strong case for the
prospect of using DTQWs to simulate various nonlinear quan-
tum phenomena. Although linearity is inherent to quantum
mechanics, emergent nonlinear models are obtained in many
situations, such as the Gross-Pitaevskii model which accounts
for the dynamics of Bose-Einstein condensates within the
mean-field approximation. It was not until recently that fair
interest has been given to nonlinear DTQWs [25–33]. In [26],
the authors worked out a version of the so-called optical
Galton board adapted to include a Kerr-type nonlinearity, im-
plying a self-phase gain in each step of the DTQW procedure,
prior to the “coin tossing” operation. They reported on a
rich set of dynamical regimes upon varying the nonlinearity
parameter, including solitonlike wave-packet propagation and
chaotic behavior. Very recently, it has been shown in [33] that
certain coin (rotation) angles lead the walker to a self-trapping
regime. Another interesting aspect is that the continuous
limit of the nonlinear optical Galton board was proved to
be a nonlinear Dirac equation [29]. Nonlinear DTQWs with
position-dependent coins were explored in [27,28]. Rigorous
mathematical treatment of nonlinear DTQWs can be found in
[34,35].
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In view of the capability of harnessing quantum cellular
automata to reproduce ubiquitous nonlinear properties, in this
paper we introduce a DTQW framework where the condi-
tional shift operator is modified to carry a dependence on
the local occupation probability attached to given strength α

we are able to control. The model accounts for an effective
third-order nonlinear contribution which is quite common in
nature, such as, for example, in electronic systems [36,37],
in the propagation of optical waves in matter [38,39], and in
Bose-Einstein condensates [40,41].

By assessing different levels of nonlinearity, we character-
ize the formation of dispersionless, solitonlike wave packets
and also spot a regime featuring self-trapping prior the their
appearance. Furthermore, we find that the walker’s first mo-
ment velocity in the limit α ≈ 0 approaches 1/

√
2, thereby

outperforming the linear case. For high enough α, the walker
develops chaotic dynamics, meaning that it becomes very
sensitive to initial conditions. At last, a sharp transition into
a chaotic regime is identified via numerical evaluation of the
associated Lyapunov coefficients.

II. NONLINEAR DTQW MODEL

Let H = HC
⊗

Hp be the full quantum walk Hilbert space,
where Hp comprises the spatial degrees of freedom {|n〉},
with n ∈ Z, and HC denotes the two-level coin space, that
is {|↑〉, |↓〉}. In the usual (linear) procedure, starting from
an initial state |�(t = 0)〉, temporal evolution is performed
via the unitary operator U = S(C ⊗ I ), where S is the con-
ditional shift (translation) operator whose effect is S|x,↑〉 =
|x + 1,↑〉 and S|x,↓〉 = |x − 1,↓〉, C is the coin operator,
here taken to be the Hadamard gate C = (|↑〉〈↑| + |↑〉〈↓| +
|↓〉〈↑| − |↓〉〈↓|)/√2, and I stands for identity operator. After
t steps, an arbitrary state reads

|�(t )〉 =
∑

x

(mx,↑(t )|x,↑〉 + mx,↓(t )|x,↓〉), (1)

with Px ≡ |mx,↑|2 + |mx,↓|2 being the probability of finding
the walker at the xth site.

We are now to introduce the nonlinear DTQW model, here
built upon modifying the conditional shift operator to become
dependent on the local occupation probability Px as

Snl |x,↑〉 = 1√
1 + (αPx )2

(|x + 1,↑〉 + αPx|x,↑〉), (2)

Snl |x,↓〉 = 1√
1 + (αPx )2

(|x − 1,↓〉 + αPx|x,↓〉), (3)

where α > 0 accounts for the nonlinearity strength (by setting
α = 0 the linear version is recovered). The second term on
the right-hand side drives the walker into self-trapping at
sites featuring high occupation probability. Such a nonlinear
mechanism emerges in many contexts [36–41]. In electronic
systems it accounts for an underlying coupling with lattice vi-
brations [36,37]. In optical lattices, it results from high-order
susceptibilities due to nonlinear polarization effects [38,39].
Self-trapping is also promoted by interparticle interactions
in Bose-Einstein condensates [40,41]. In these systems, the
combined action of nonlinear self-trapping and dispersion

leads to solitonlike wave transport, a phenomenon we are
about to address in detail for the present nonlinear model.

By inspecting Eqs. (2) and (3), we see that when nonlin-
earity is weak (α ≈ 0), the square root approaches 1 and αPx

becomes relevant only if the local probability is large enough.
In this case, even though the dynamics is mostly linear,
the nonlinear component rapidly builds up given the initial
state is fully localized. This entails significant changes in the
dispersion profile of the wave function, becoming visibly less
dispersive (solitonlike) in the regime of strong nonlinearity
(α � 1).

The evolved state after t steps is obtained via the
nonunitary (hence irreversible) evolution |�(t )〉 = [Snl (C ⊗
I )]t |�(t = 0)〉 of a symmetric input prepared at the middle
of the chain (x0 = 0), |�(t = 0)〉 = (|x0,↑〉 + i|x0,↓〉)/

√
2,

with N always set so as to avoid boundary effects. Because
the above procedure does not preserve the norm, we reset
|�〉 → |�〉/√〈�|�〉 after each step. Nonunitary update rules
had been envisaged in the context of quantum cellular au-
tomata [21,22] before quantum walks became popular and
broaden up the possibilities for tuning quantum dynamics
(see [42], for instance). We also mention that nonunitary
DTQWs have been increasingly investigated [5,7,8,43–46].
This is usually brought into the framework upon including
measurements, gain/loss, and other decoherent processes.
Recent experimental progress in photonic platforms has made
possible exploration of topological phenomena [5,7,8] and
light dynamics through parity-time symmetric lattices [47–50]
using nonunitary quantum walks.

As single-particle quantum walks are primarily driven by
interference, optical systems relying on coherent light propa-
gation have been a major platform for their implementation,
given the easiness of state preparation, port control, and mea-
surement [51]. One particular setting is based on encoding the
walker position as pulse arrival times [46–50,52–59]. It basi-
cally consists of two fiber loops of different lengths connected
via a 50:50 coupler as shown in Fig. 1(a). The pulse propa-
gating through the shorter (longer) loop is then advanced (de-
layed) in time, which is interpreted as a reduction (increase) of
the spatial coordinate by 1 [see Fig. 1(b)]. A crucial advantage
of such architecture is that the output is recurrently supplied as
input, with some intensity being sent out to fast photodiodes
for detection at the end of every round so as to record the
walker dynamics. Compared to encoding the walker’s position
in actual space—say, in a Galton board–like configuration
[similar to Fig. 1(b)]—the time-multiplexing scheme saves a
great deal of resources (alignment, cost, etc.), thereby allow-
ing for realization of many quantum walk steps [47–49,55,57].
Those are particularly suitable for our nonlinear DTQW
model, as the modified shift operator Snl must be fed with the
local quantum-mechanical probabilities—light intensities in
optics—at every step [see Eqs. (2) and (3)], which demands
active readout-feedback procedures. The recursive relations
for the light evolution have the form (before normalization)

mx,↑(t + 1) = �x−1(t )[mx−1,↑(t ) + mx−1,↓(t )]

+ αPx(t )�x(t )[mx,↑(t ) + mx,↓(t )], (4)

mx,↓(t + 1) = �x+1(t )[mx+1,↑(t ) − mx+1,↓(t )]

+ αPx(t )�x(t )[mx,↑(t ) − mx,↓(t )], (5)
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FIG. 1. (a) Two coupled-fiber loops of different lengths are con-
nected by a 50:50 fiber coupler in order to induce a time delay
between them. This arrangement is isomorphic to (b) an optical
network spanned by pulse arrival times, taking the role of positions
vs number of round trips. S (L) stands for short (long) loop, which
reduces (advances) the position coordinate by 1. Considering the
standard time-multiplexing architecture [47], a single step in our
DTQW model must correspond to two consecutive round trips
through the coupled-fiber system so as to fulfill Eqs. (4) and (5).

where �x(t ) = [1 + (αPx(t ))2]−1/2 and αPx(t )�x(t ) (both
<1 for α = 0) are loss parameters featuring embedded
nonlinearity as they depend on the local intensity P(x). Fine
tuning of amplitude modulations can be introduced upon
adding acousto-optic modulators in each loop, as seen in
Refs. [47–50], for example. Also note that as each local
amplitude feeds itself in a single iteration, a DTQW step
should correspond to two round trips in the time-multiplexing
usual arrangement [47,54], as indicated in Fig. 1(b). The
cumulative effect of the above iterative process is such that
it yields an increase of the total intensity, which calls for
normalization before initiating another step and may be
incorporated through another output-based loss, this time at a
common rate 1/

√〈�|�〉 for all amplitudes. We finally men-
tion that soliton dynamics has been experimentally probed in
1D [49] and 2D [50] nonlinear DTQWs via synthetic photonic
discrete lattices based on time multiplexing by incorporating
judiciously controlled gain and loss (nonunitarity).

III. SOLITON DYNAMICS

To begin our analysis, let us take a look at the overall dy-
namical profile for various values of α as shown in Fig. 2. For
the sake of comparison, Fig. 2(a) shows the linear, Hadamard
walk, where the wave function is known to go toward a
delocalized state asymptotically and its standard deviation

FIG. 2. Time evolution of probability Px (t ) in space for (a) α = 0
(linear DTQW), (b) α = 0.2, (c) α = 1, and (d) α = 50. N is set large
enough to ensure the wave function does not reach the border and the
initial state is the symmetric one, |�(t = 0)〉 = (|x0, ↑〉 + i|x0,↓〉)/√

2 for x0 = 0.

σ ∼ t entailing a ballistic spreading [2]. In the presence of a
low degree of nonlinearity, as seen in Fig. 2(b) for α = 0.2, we
note the onset of solitonlike behavior, becoming sharper as α

is further increased in Figs. 2(c) and 2(d). Another interesting
aspect to note from Fig. 2(d) is that those solitonlike structures
are formed after a transient time during which the initial state
is self-trapped until it suddenly breaks down into a pair of
traveling solitonlike pulses departing at a distance from the
origin.

We have checked that solitonlike structures emerge for
any α = 0 via the asymptotic behavior of the single-pulse
(that is half of the wave function) dispersion σsp(t ) =√∑∞

x=0(x − 〈x(t )〉)2Px(t ), with 〈x(t )〉 = ∑∞
x=0 xPx(t ) and

Px(t ) being properly normalized in that interval.
Figure 3 shows two distinct dynamical profiles depending

on the degree of nonlinearity. To get into that, we shall define
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FIG. 3. Single-pulse dispersion σsp(t ) for α = 0.3, 0.5 (top

panel) and α = 20, 30 (bottom panel). The stationary regime of
σsp(t ) indicates formation of a stable solitonlike pulse. Here we
define the soliton formation time τ as the instant σsp reaches its
maximum. The inset of the bottom panel shows the same curves,
zoomed in for better visualization of the stationary regime.
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FIG. 4. Soliton formation time τ vs α as evaluated via the
single-pulse dispersion dynamics (see text). There are two dynamical
regimes, one of which is characterized by τ ∼ α−2 (left side) and the
other (right side) by τ ∼ α. The latter is where the walker undergoes
a transition from a self-trapped state to solitonlike behavior. There is
a discontinuity between both regimes represented by the shadowed
area in the interval α ∈ [1, 2) where τ cannot be evaluated precisely.

the soliton formation time τ as the instant σsp reaches its
maximum. This is a numerically convenient measure that
enables us to deal with both regimes. For lower (higher)
degrees of nonlinearity, τ seems to diminish (grow) upon
increasing α.

To clearly distinguish between these two regimes, Fig. 4
shows how τ scales with α. For small values of α, we note that
the timescale for soliton formation is characteristically longer,
fulfilling τ ∼ α−2. At some point, this tendency breaks down.
Roughly in the interval α ∈ [1, 2] the curve σsp(t ) presents no
peak to extract τ from. Interestingly, right after this interval
the walker begins to display the self-trapping behavior before
turning into solitonlike pulses [as clearly seen in Fig. 2(d)]. At
this stage, τ grows linearly with α.

Having addressed the onset of soliton formation and its
corresponding timescales, let us now evaluate how fast it
moves. To do so, we track the single-pulse walker’s aver-
age position 〈x(t )〉 = ∑∞

x=0 xPx(t ) (first moment) and eval-
uate its velocity v in the long-time limit. Results for the
time evolution of 〈x(t )〉 are shown in Fig. 5 for some rep-
resentative values of the nonlinear coupling. The long-time
asymptotic velocity as a function of α is reported in Fig. 6. The
regimes of weak and strong nonlinearities are characterized
by quite distinct dynamics. In the strongly nonlinear regime,
〈x(t )〉 presents a very slow initial increase in the time interval
during which self-trapping is active. After this initial transient,
a solitonic pulse evolves with a constant velocity. In the
weakly nonlinear regime, the asymptotic velocity becomes
larger than the corresponding one at α = 0. First and fore-
most, it is convenient to have in mind that the velocity for the
linear case (α = 0) is v = 1/2 [3]. Now, for α → 0, it reaches
v = 1/

√
2. This happens because the nonlinearity couples

the frequency modes, thereby allowing for energy exchange
between them such that it results in an energy drift [60,61] to

FIG. 5. Time evolution of the single-pulse average position
〈x(t )〉 for some representative values of the nonlinearity level α. For
strong nonlinearities, 〈x(t )〉 has a very slow initial increase during
the self-trapping time. After that it evolves with a constant velocity.
For weak nonlinearities, there is a crossover from v = 1/2 at short
times to a larger velocity after the soliton formation. The inset shows
this crossover around the soliton formation time for α = 0.01.

the bottom of the band where the group velocity is maximum,
that is, vg = 1/

√
2 [3]. For timescales much smaller than the

typical soliton formation time τ , a weak nonlinear coupling
does not significantly affect the dynamics and the spreading
velocity v � 1/2. However, for t � τ the velocity becomes
larger, with an overshooting during the soliton formation.
These features are illustrated in the inset of Fig. 5. It is impor-
tant to have in mind that the soliton formation time diverges
as τ ∼ 1/α2 when α → 0; therefore the order on which the
limits of t → ∞ and α → 0 are taken is relevant. Figure 6
was raised measuring the velocity after the soliton formation.
Another interesting aspect we note is that the velocity takes

FIG. 6. Asymptotic velocity v of the single-pulse average posi-
tion 〈x(t )〉 against nonlinearity level α, obtained via linear regression
at long times (t = 8600 in some cases). The maximum velocity is
found to be v = 1/

√
2 when α → 0.
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FIG. 7. Averaged Lyapunov exponent λ vs nonlinearity strength
α. For each α we generated about 350 independent sets of {δx}
(randomly distributed within [−10−6, 10−6]) to form |�δ (t0)〉 and
thus evaluate the distance d (t ) (see text for details) starting at t0 =
500. A linear fit is put in order for ln d (t ) so as to find its slope λ,
conveniently between steps t = 600 and t = 800. The system size
is fixed to N = 8000 to avoid boundary effects, and the initial state
|�(t = 0)〉 = (|x0, ↑〉 + i|x0, ↓〉)/

√
2, with x0 = 0. Chaotic features

begin to set in above αc ≈ 23. The line is for guiding the eye, and it
follows that 0.1(α − αc )/[1 + (α − αc )] in the chaotic regime. Each
point is the average over many neighboring outcomes.

v = 1/2 again between α = 1 and 2, thus belonging to the
interval corresponding to the regime’s crossover (see Fig. 4).
In addition, we see that higher velocities are assigned to the
slow soliton formation regime characterized by τ ∼ α−2.

Another feature worth investigating is the behavior of
〈x(t )〉 and σsp(t ) at early times (before soliton formation). At
the low nonlinearity level, we may approximate the short-time
probability distribution at the right side of the chain as having
a uniform profile P(x < xm) = 1/xm up to a wave-packet
front position evolving ballistically as xm ∝ t . In this case
〈x(t )〉 ∼ t and σsp(t ) ∼ t , as one would also obtain for the
linear DTQW. Such a short-time regime is interrupted by
the soliton formation. Now for the regime where temporary
self-trapping takes place (α > 2), we may consider that P(x <

xm) = aδ(x) + b at short times, where δ(x) is the Dirac δ

distribution accounting for the self-trapped component, b is
a constant, and a = 1 − bxm, resulting from the normaliza-
tion of P(x). That yields to the short-time dynamic behavior
〈x(t )〉 ∼ t2 and σsp(t ) ∼ t3/2. This regime is short-lived, as the
newly born solitonlike pulses travel off [see Fig. 2(d)] with
uniform velocity.

IV. TRANSITION TO CHAOS

A trained eye may notice in the inset of Fig. 3 that after
the solitonlike pulse has been fully established, as accounted
for by σsp(t ), it goes on following a periodic breathing pattern
for α = 20 while displaying an irregular profile for α = 30.
This scenario makes us wonder about the possibility of the
quantum walker to display some sort of sensitivity to initial
conditions for large enough α.

FIG. 8. Snapshots of the single pulse distribution for two repre-
sentative values of the nonlinearity. (a) For α = 10 the distribution
keeps its form while propagating along the chain. (b) For α = 50
the wave packet develops irregular fluctuations typical of the chaotic
regime.

In order to properly set the boundary for such an unstable
regime, we evaluate the Lyapunov exponent by adding a small
perturbation to the wave function at a given instant so as
to see if it diverges exponentially from the original form.
In particular, at step t0 we set another state of the form [cf.
Eq. (1)],

|�δ (t0)〉 =
∑

x

(
m(δ)

x,↑(t0)|x,↑〉 + m(δ)
x,↓(t0)|x,↓〉), (6)
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FIG. 9. Density plot of the single pulse dispersion as a function
of time t and nonlinearity α. Peaks in dispersion separate the initial
transient regimes from the solitonic regime. The initial transient
features spread (self-trapped) distributions for weak (strong) nonlin-
earities. Dispersion has no peak at intermediate nonlinear strengths.
The chaotic regime is characterized by irregular fluctuations of the
wave-packet dispersion.

where m(δ)
x,(↑,↓) = mx,(↑,↓)(1 + δx ), with δx ∈ R being a ran-

dom number falling in the box distribution [−10−6, 10−6].
We normalize it afterwards, |�δ〉 → |�δ〉/

√〈�δ|�δ〉, and
carry on with |�δ (t, t0)〉 = Ut−t0

nl |�δ (t0)〉 and |�(t, t0)〉 =
Ut−t0

nl |�(t0)〉 separately, evaluating the distance between both
states via d (t ) ≡ |〈�d |�d〉|2 at each step, for the non-
normalized state |�d (t, t0)〉 = |�δ (t, t0)〉 − |�(t, t0)〉. To fi-
nally find the Lyapunov exponent λ we assume d (t ) =
d (t0)eλt . Figure 7 shows λ against the degree of nonlinearity α

averaged over many independent samples of {δx} for each α.
There is indeed a chaotic regime starting from αc ≈ 23 above
which λ values become positive.

To illustrate the distinct wave-packet dynamics in the regu-
lar and chaotic regimes, we plot some snapshots of the single
pulse distribution for two distinct values of the nonlinear
strength below and above the transition to chaos (see Fig. 8).
In both cases, the wave-packet width is time independent,
as expected for solitonic pulses. However, for α < αc the
pulse keeps its form while traveling along the chain while it
develops irregular fluctuations in the chaotic regime.

We summarize the distinct dynamical regimes reported
above in Fig. 9, where we show a density plot of the single
pulse dispersion as a function of time t and nonlinearity
α. The regime of weak nonlinearity is characterized by an
initial spreading of the wave-packet distribution followed by
a transient soliton formation period after which the pulse
propagates at a constant velocity. The dispersion develops
a wide peak during the soliton formation. In the strongly

nonlinear regime, the distribution presents a transient self-
trapping period, after which a solitonic pulse starts to move.
The dispersion presents a sharp peak during the transition
from self-trapping to solitonic behavior. There is a regime of
intermediate nonlinear strengths on which the dispersion has
no peak. For very strong nonlinearities, the chaotic regime is
signalled by irregular fluctuations of the pulse dispersion.

Last, me mention that the DTQW dynamics remains
(quasi)ballistic despite the presence of nonlinearity, thereby
maintaining its quantum hallmark. Using a different nonlinear
and unitary DTQW model accounting for a specific configura-
tion of the optical Galton board, the authors of Ref. [26] also
found no deterioration of the quantum walk property σ ∝ t
with the formation of solitonlike pulses.

V. CONCLUDING REMARKS

The Hadamard DTQW model with modified shift opera-
tor to encompass a third-order nonlinear contribution which
underlies many physical phenomena was shown to display
a wide range of dynamical regimes. Solitonlike pulses were
found for any degree of nonlinearity α and preceded by
temporary self-trapping for α > 2, during which 〈x(t )〉 ∼ t2

and the soliton formation time τ ∼ α. The regime of small α

is characterized by τ ∼ α−2 and for featuring higher velocities
of the single-pulse first moment 〈x(t )〉 in the asymptotic long-
time limit, reaching v = 1/

√
2 for α → 0.

Such speedup may find applications in quantum search
protocols. As a matter of fact, it has been investigated in
the realm of the Gross-Pitaevskii equation [62,63]. The very
presence of cubic nonlinearity of the form |ψ |2ψ is such
that it outperforms the Schrödinger equation in solving the
unstructured search problem.

Another remarkable feature emerging from the third-order
nonlinearity is the sharp onset of a chaotic regime taking place
after stabilization of the solitonlike pulse. We evaluated the
Lyapunov coefficients for a range of α values and got α ≈
23 as the nonlinearity degree that marks the transition from
regular to chaotic dynamics. We mention that chaotic behavior
was also identified in a different model in Ref. [26].

We hope that the above findings fuel further research
in nonlinear DTQWs as potential platforms for observing
the clear signatures of quantum chaos and other nonlinear
phenomena, especially in view of the recent progress of
experimental implementations of nonunitary quantum walks
via photonic devices [5,7,8].
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