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Disorder-assisted distribution of entanglement in XY spin chains
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We study the creation and distribution of entanglement in disordered XY -type spin-1/2 chains for the
paradigmatic case of a single flipped spin prepared on a fully polarized background. The local magnetic field is
set to follow a disordered long-range-correlated sequence with power-law spectrum. Depending on the degree
of correlations of the disorder, a set of extended modes emerges in the middle of the band yielding an interplay
between localization and delocalization. As a consequence, a rich variety of entanglement distribution patterns
arises, which we evaluate here through the concurrence between two spins. We show that, even in the presence
of disorder, the entanglement wave can be pushed to spread out, reaching distant sites, and also to enhance
pairwise entanglement between the initial site and the rest of the chain. We also study the propagation of an initial
maximally entangled state through the chain and show that correlated disorder improves the transmission quite
significantly when compared with the uncorrelated counterpart. Our work contributes in designing solid-state
devices for quantum information processing in the realistic setting of correlated static disorder.
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I. INTRODUCTION

In the past few decades, since the seminal proposal
put forward by Bose [1], much attention has been given
to solid-state hardware where information is encoded in
stationary spins acting as qubits in which the energy split-
ting is induced by a local magnetic field and the (usually
nearest-neighbor) coupling between them is set by their
exchange interaction. Following that, it has been shown that
low-dimensional spin chains can act as efficient (especially
for short-distance communication) quantum “wires” for car-
rying out quantum-state transfer protocols [1–11] as well
as creation and distribution of entanglement [12–21], both
being pivotal tasks in quantum networks [22]. Physically,
spin chains may be implemented in many platforms such as
NMR systems [23], optical lattices [24,25], arrays of coupled
cavity-QED systems [26,27], superconducting circuits [28],
nitrogen vacancies in diamond [29], and waveguides [30].

The main advantages of using spin chains as quantum chan-
nels are twofold. First, they bypass the need for interconverting
between photons and qubits, such as in hybrid light-matter
devices [22,27,31], which demands a high degree of control
and may lead to decoherence and losses. Moreover, most
of the protocols require minimal user control (mostly at the
sender and receiver sites) as the system’s dynamics is driven
through the evolution of the underlying Hamiltonian, offering
thus a versatile toolbox for quantum information processing
purposes. The analytic tractability of the spin Hamiltonian has
allowed for several theoretical investigations. For instance,
a specific modulation of the entire chain allows for perfect
state transfer as shown in Refs. [2,3] (see also Ref. [32]). By
adding in local defects, either in the form of magnetic fields
or coupling strengths, it is possible to carry out high-fidelity
quantum-state transfer (it takes place by effectively reducing
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the operating Hilbert space) [4,6,7,10,11,33] and routing
protocols [34–36], and to control and enhance entanglement
distribution [13,14]. Also, it has been shown that gapped
dimerized models play a major role in establishing long-
distance communication [6,17,19,21,27,33].

All these essential tasks that can be performed using spin
chains rely on how precisely its parameters can be tuned.
Thereby, the very task of engineering those systems poses a
few challenging issues. First of all, it is not trivial to address
a single spin with the desired precision although significant
progress has been achieved [24]. Another crucial one is due to
fabrication errors (e.g., spin positioning) which lead to disorder
and thus localization of quantum information [37,38]. Since
experimental imperfections may always be present in solid-
state devices, it becomes essential to analyze their robustness
to that and check whether it is even possible to enhance transfer
of information through noisy channels [16,37,39–46]. Most
of the works in this direction have addressed the effects of
site-independent random fluctuations (static disorder), and the
general verdict is that some protocols are prone to survive it
as long as disorder does not overcome a given threshold.

It is well established that single-particle eigenstates of
one-dimensional (1D) tight-binding models featuring random
potentials are all exponentially localized no matter how strong
the disorder is [47]. This is, however, no longer true when
internal correlations in the disorder distribution are present.
It was shown that short-range spatial correlations induce
the breakdown of Anderson localization, thereby elucidating
transport properties for a wide class of polymers [48].
Following the road, it was demonstrated that long-range
correlations [49,50] promote the appearance of a band of
extended states with well-defined mobility edges separating
them from localized states, thus revealing an Anderson-like
metal-insulator transition. That was later confirmed using
single-mode waveguides [51], and many related experiments
have been carried out since then [52] (see Ref. [53] for a
recent review on the subject). Right after the above findings
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took place, there has been tremendous interest in investigating
dynamical properties of various 1D models featuring either
diagonal (on-site potential) or off-diagonal (hopping strength)
correlated disorder [54–57]. In particular, it was shown that the
one-magnon spectrum of ferromagnetic chains [54] can exhibit
a phase of low-energy delocalized states, thus displaying a rich
set of dynamical regimes.

Generally speaking, the interplay between localized and
delocalized states sets a suitable ground for designing quantum
information processing protocols and that is exactly where
our work fits in. Here we address how long-range-correlated
diagonal disorder affects the transport of quantum information
in spin chains. Specifically, we aim to track down the
entanglement wave produced after a tiny disturbance on
the fully polarized state, that is, a single flipped spin set in the
bulk of an isotropic XY chain. This is a rather paradigmatic
scenario and has been tackled in recent experiments [25].

In this work, the local magnetic field is set to follow a
disorder distribution with power-law spectrum of the form
S(k) ∝ 1/kα , where k is the corresponding wave number
and α accounts for the degree of long-range correlations.
We emphasize that such a kind of long-range-correlated
disorder must not be viewed solely as an imposed scenario
on the spin chain. In fact, many stochastic processes in
nature featuring long-range correlations are expected to obey
a power-law spectrum, such as, to name a few examples,
nucleotide sequences in DNA molecules [58], which may
strongly affect electronic transport, plasma fluctuations [59],
and patterns in surface growth [60]. Therefore, on the one
hand, fluctuations arising from the fabrication of solid-state
quantum information devices might not always be completely
random, i.e., uncorrelated. On the other hand, instead of trying
to impose a set of finely tuned parameters, it should be more
realistic, on the experimental side, to devise a scheme that
allows for the presence of correlated disorder.

Here, we show that the degree of long-range-correlated dis-
order, α, ultimately controls the entanglement distribution pro-
file after the excitation is released from the middle of the chain
following the system’s Hamiltonian dynamics. Moreover, we
report an enhancement of entanglement between the initial
site and the rest of the chain as α goes from zero (uncorrelated
disorder) to α = 2. For α > 2, entanglement becomes more
prominent between symmetrically located spins, with respect
to the initial site, and their nearest neighbors. Furthermore, we
study the propagation of a Bell-type state through the chain and
show that the entanglement transmission coefficient (through
a given fixed site of the chain) significantly increases with α

to the point of surpassing the reflection coefficient.
The remainder of this paper is organized as follows. In

Sec. II, we introduce the spin Hamiltonian featuring on-site
long-range-correlated disorder. In Sec. III, we briefly discuss
the entanglement measurements that are used through the
paper. In Sec. IV we discuss the dynamics of entanglement
for the ordered chain and show our results for the disordered
scenario. Final comments are addressed in Sec. V.

II. SPIN-CHAIN HAMILTONIAN

We consider a one-dimensional isotropic spin chain
featuring XX-type exchange interactions as given by the

FIG. 1. (a) Sketch of the spin chain featuring XX-type exchange
interactions with strength J subjected to a random on-site potential
landscape (depicted by red bars). The spin chain is initialized in a
fully polarized state and a single excitation (a flipped spin) is set, say,
in the middle of it. We thus let it evolve via its Hamiltonian dynamics.
(b) Single realization of the disorder distribution {εn} (in units of J )
generated from Eq. (3) for α = 0, 1, and 2, and N = 400. The entire
sequence is normalized satisfying 〈εn〉 = 0 and 〈ε2

n〉 = 1. We note that
by increasing α the distribution smooths out, resembling the trace of
a fractional Brownian motion (see the last panel for α = 2).

Hamiltonian (h̄ = 1)

ĤS =
N∑

n=1

εn

2

(
1̂ − σ̂ z

n

) −
N−1∑
n=1

Jn

2

(
σ̂ x

n σ̂ x
n+1 + σ̂ y

n σ̂
y

n+1

)
, (1)

where σ̂
x,y,z
n are the usual Pauli operators for the nth spin,

εn is the strength of the local magnetic field, and Jn is
the exchange coupling rate. The above Hamiltonian can be
put into another equivalent form through the Jordan-Wigner
transformation which maps the spin Hamiltonian (1) onto a
system of noninteracting spinless fermions,

Ĥ =
N∑

n=1

εnĉ
†
nĉn −

N−1∑
n=1

Jn(ĉ†nĉn+1 + ĉ
†
n+1ĉn), (2)

where ĉ
†
n (ĉn) creates (annihilates) a particle at the nth site.

That way, the presence (absence) of a fermion in a given
site represents a spin-up (spin-down) state. Note that since
[Ĥ ,

∑
n ĉ

†
nĉn] = 0, Hamiltonian (2) can be split into number-

invariant subspaces. Here, we aim to study the entanglement
generated from a single particle prepared in a given location
on top of the fully polarized state |vac〉 ≡ |00 · · · 0〉 [see
Fig. 1(a)]. Thereby, the whole dynamics takes place in the
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single-excitation sector {|n〉}, with |n〉 ≡ ĉ
†
n|vac〉, and Eq. (2)

takes the form of an N×N tridiagonal hopping matrix.
Now, let us make a few considerations about the parameters

of the chain. First, we set a uniform distribution of hopping
rates (exchange interaction) Jn = J . The on-site potentials
(local magnetic fields), however, will follow a disorder
distribution of a special kind. Disorder can arise from manu-
facturing imperfections and/or due to dynamical factors. Either
way, we can safely assume that the noise is static; that is, it does
not change considerably over time. Here we consider random
sequences featuring long-range spatial correlations, and one of
the most simple and convenient ways to model it is by consid-
ering the trace of a fractional Brownian motion with power-law
spectrum S(k) ∝ 1/kα which can be built from [49,56]

εn =
N/2∑
k=1

k−α/2cos

(
2πnk

N
+ φk

)
, (3)

where k = 1/λ and λ is the wavelength of the modulation
profile, {φk} are random phases uniformly distributed
within [0,2π ], and α ultimately accounts for the degree of
correlations. Hereafter, we normalize the above sequence to
have zero mean and unit variance, which can be done by simply
redefining εn → (εn − 〈εn〉)/

√〈ε2
n〉 − 〈εn〉2. We emphasize

that the disorder distribution generated by the above formalism
has no typical length scale, which is a characteristic of several
stochastically generated natural series [61]. The power-law
spectral density S(k) ∝ 1/kα is a direct consequence of the
power-law form of the two-point correlation function. Indeed,
α is related to the Hurst exponent [62] through H = (α − 1)/2.
This quantity describes the self-similarities of the series and
also the persistence of its increments. For α = 0, the sequence
is completely uncorrelated, whereas for any value α > 0
intrinsic long-range correlations appear. The value α = 2
represents the case in which the sequence mimics the trace of
a Brownian motion. When α > 2 (α < 2) the increments on
the series are said to be persistent (antipersistent).

In Fig. 1(b) we show samples generated by Eq. (3)
for different values of α. For α = 0 we recover the stan-
dard uncorrelated disorder (white noise) distribution where
〈εiεj 〉 = 〈ε2

i 〉δi,j . For α > 0, internal correlations take place,
giving rise to the trace of a Brownian motion when α = 2.
The sequence becomes less rough as we further increase the
parameter α [49]. Interestingly, it was shown in Ref. [49]
for a tight-binding electronic model that the fractal nature
of the potential landscape arising from Eq. (3) dictates the
appearance of delocalized electronic states around the band
center of the one-particle spectrum when α > 2. Those are
kept apart from localized states by two mobility edges. Similar
behavior was also reported in Refs. [50,54,55].

Here we investigate how the interplay between localized
and delocalized modes affects the dynamics of entanglement
in XY spin chains described by Hamiltonian (2), which has
the form of a standard hopping model. Right before that, let
us first illustrate the tools we adopt to quantify entanglement.

III. QUANTIFYING ENTANGLEMENT

Here we deal with two common measures of bipartite entan-
glement, namely, the von Neumann entropy, which addresses

the amount of entanglement a given subsystem (say, a spin
block) is sharing with the rest the chain (the whole system
being in a pure state), and the so-called concurrence [63],
which is the most suitable tool for characterizing entanglement
between two qubits in an arbitrary mixed state.

Let us consider a single quantum particle hopping on a
network with N sites modeled by a Hamiltonian of the form
of Eq. (2). Note that this hopping particle may represent an
actual fermion or boson, or, which is our case, a single flipped
spin propagating along the chain via exchange interactions
[cf. Eqs. (1) and (2)]. Generally speaking, whenever we
mention qubit, we mean the two logical states |0i〉 and |1i〉
corresponding to the eigenstates of σ̂ z

i . Furthermore, because
of the conservation of the total magnetization in the z direction
and the presence of at most one flipped spin in the chain, |0i〉
(|1i〉) matches with the absence (presence) of a fermion at the
ith site.

Any given arbitrary state in the single-particle sector can be
written as a linear combination of the single-excitation basis
{|i〉}, that is,

|ψ〉 =
∑

i

wi |i〉, (4)

with wi being a complex coefficient in such a way that |wi |2
is the probability of finding the particle at site i. In the density
operator formalism, it reads

ρ = |ψ〉〈ψ | =
∑

i

∑
j

wiw
∗
j |i〉〈j |. (5)

Now suppose we want to write down the state for a block
of spins AL of size L. This can be done by choosing a specific
set of sites and tracing out the rest of them, ρL = TrBN−L

ρ,
where BN−L denotes the remaining set. The resulting reduced
density operator, expressed in its diagonal basis, is given
by ρL = diag[p,1 − p], where p ≡ ∑

i∈AL
|wi |2. A quite

straightforward way to compute the entanglement between
both partitions A and B, given that the overall state is pure, is
through the well-known von Neumann entropy

S[ρL] = −TrρLlog2ρL = −plog2p − (1 − p)log2(1 − p),

(6)

which in our case is bounded by the interval [0,1], with 0
accounting for a product (separable) state and 1 for a fully
entangled one. The entropy above thus depends only on the
total probability p of finding the excitation within block AL,
reaching its maximum when p = 1/2.

In order to characterize how much entanglement can be
found in a given pair of spins, say i and j , we once again
evaluate the reduced density operator which, in the basis
{|0i0j 〉,|1i0j 〉,|0i1j 〉,|1i1j 〉}, reads

ρi,j =

⎡
⎢⎢⎣

1 − |wi |2 − |wj |2 0 0 0
0 |wi |2 wiw

∗
j 0

0 wjw
∗
i |wj |2 0

0 0 0 0

⎤
⎥⎥⎦. (7)

The two-site reduced density matrix above is all we need to
evaluate the amount of entanglement shared by the pair of spins
through the concurrence [63] which, given a general bipartite
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mixed state ρAB of two qubits, is defined by

C(ρAB) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (8)

where {λi} are the eigenvalues, in decreasing order of the
non-Hermitian matrix ρABρ̃AB , where

ρ̃AB = (σ̂y ⊗ σ̂y)ρ∗
AB(σ̂y ⊗ σ̂y) (9)

and ρ∗
AB is the complex conjugate of ρAB . For separable

qubits, we have C = 0. On the other hand, for fully entangled
particles, C = 1. In our case, Eq. (7), the concurrence reads

Ci,j ≡ C(ρi,j ) = 2|wiwj |; (10)

that is, it depends only on the wave-function amplitude of both
spins of interest.

IV. TIME EVOLUTION OF ENTANGLEMENT

In this section, we investigate the time evolution of
entanglement in the spin chain described by Hamiltonian (1)
in the presence of random on-site potentials (local magnetic
fields) featuring long-range spatial correlations [see Eq. (3)]
starting from a fully localized spin excitation in the bulk of a
polarized background.

A. Pure chain

We start off our discussion for the noiseless case, that is,
εi = ε. The dynamics of entanglement for the uniform chain
has already been studied in a very detailed way in Ref. [12].
For completeness, we now briefly recall the main aspects of it.
That settles the grounds for our following investigation.

Given the unitary evolution, |ψ(t)〉 = Û(t)|ψ(0)〉, where
Û(t) ≡ e−iĤ t is the unitary time-evolution operator, we have,
in terms of the spectral decomposition of the Hamiltonian,

|ψ(t)〉 = e−iH t |ψ(0)〉 =
∑

k

e−iEkt |Ek〉〈Ek|ψ(0)〉. (11)

For a translational-invariant array, the normal modes are well
known (plane waves) and read

Ek = 2J cos(k/2), (12)

|Ek〉 =
√

2

N + 1

N∑
x=1

sin
kx

2
|x〉, (13)

with k = 2πm/(N + 1) and m = 1, . . . ,N . Given a fully
localized initial state at site x0, |ψ(0)〉 = |x0〉, the evolved state
features coefficients (herein we take J = 1 or, equivalently,
t → tJ )

wx(t) = 〈x|ψ(t)〉 = 2

N + 1

∑
k

ei2cos(k/2)tsin(kx)sin(kx0),

(14)

where the probability of finding the spin excitation at position
x is simply the absolute square of the above expression,
|〈x|ψ(t)〉|2.

In this work, despite considering the spin chain to be es-
sentially finite, we are interested in studying the entanglement
distribution in the neighborhood of the initial site before the

excitation reaches the boundaries. Thereby, we can effectively
work in the thermodynamic limit N → ∞ where Eq. (14)
takes the convenient form [12,64,65]

wx(t) = i|x−x0|J|x−x0|(2t), (15)

where Jν(z) is the νth Bessel function of the first kind. From
the properties of the Bessel functions, its maximum amplitude
decays as 1/

√
m, where m ≡ |x − x0| is the distance from

the initial flipped spin. This maximum is associated with the
first root of the derivative of the Bessel function, which we
denote by z∗

m. Using d[zmJm(z)]/dz = zmJm−1(z), one can
easily show that

z∗
m = m

Jm(z∗
m)

Jm−1(z∗
m)

(16)

(note that dJm(z)/dz = 0 at z = z∗
m). Straightforward numer-

ical analysis shows that z∗
m ≈ m for the first root. Therefore,

the wave function reaches a given site roughly at t ≈ m/2 and,
after reaching its first maximum, it goes on oscillating with the
same frequency but decaying as 1/

√
t .

Keeping in mind what has been discussed above, one may
grasp the concurrence behavior right away [see Eqs. (10)
and (15)]. Basically, the excitation spreads out ballistically
from the origin in the form of two dispersing envelopes as
shown in Fig. 2(a). Entanglement turns out to be concentrated
at the front wave packet corresponding to the first local
maximum occurring when t ≈ m/2, in which the correspond-
ing site becomes mostly entangled with its first neighbors as
well as with equidistant sites due to the symmetric nature of
the wave function [see Fig. 2(b)]. This very region also gets
partially entangled with the remaining sites wherever there is
a nonvanishing wave amplitude. The concurrence then goes
on decaying with time and oscillating with a well-defined
period [12].

In summary, in a completely uniform chain the excitation,
as well as the entanglement, tends to become homogeneously
distributed across the chain, for sufficiently long times, due to
the extended nature of the underlying eigenstates [see Eq. (13)]
regardless of the initial conditions. Take, for instance, an
initial entangled Bell state of the form (|0i1j 〉 ± |1i0j 〉) ⊗
|vac〉/√2 = (|i〉 ± |j 〉)/√2. In this case, the wave-function
coefficients [Eq. (15)] can be expressed as [12]

w
(t) = 1√
2

[J
−i(2t) + i(i−j )J
−j (2t)]. (17)

There are no qualitative differences between initializing the
system with a single excitation or a maximally entangled Bell
state of the above form—the latter case will feature different
interference profiles in between both initial sites depending
on the distance between them—as both access the same set
of eigenstates during the evolution. Because of that, here
we focus on the case of a single flipped spin prepared on
a polarized background. Moreover, this problem has been
addressed experimentally [25] using ultracold atoms in optical
lattices to study entanglement propagation.

The dynamics discussed above can be seen as a protocol
for generating entanglement between distant sites through the
natural evolution of the spin chain [1,3,4,8,34], though it grad-
ually becomes weaker with distance due to dispersive effects
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FIG. 2. (a) Wave-function amplitude distribution for the ordered
case when tJ = 20 for an excitation initially prepared at site 0. It
propagates outwards reaching distant sites at t ≈ m, with m being the
distance from the origin. (b) Corresponding entanglement distribution
profile measured by the concurrence Ci,j . Note that the “entanglement
wave” mostly involves pairwise correlations between the sites located
within the largest wave amplitude and the rest of the chain. Basically,
this checkerboard pattern is maintained while the concurrence evolves
and tends to become homogeneously distributed after a long time.
Both plots were obtained directly from Eqs. (10) and (15).

(since the chain is uniform). However, this entanglement may
be properly distilled into pure singlets [1,66], thus building up
resources for quantum teleportation schemes.

B. Disordered chain

By adding uncorrelated on-site disorder to the system,
the above scenario changes dramatically. In one-dimensional
tight-binding models, the presence of disorder is well known
for inducing Anderson localization [47] of every eigenstate no
matter how weak the disorder is. Each mode gets exponentially

localized around a site, that is, 〈x|Ek〉 ∼ e
− |x−x0 |

ξk for a given
x0, where ξk accounts for the length of localization [67]. As
a consequence, the excitation is unable to spread out too far
from the origin and so entanglement remains concentrated
there for all times [cf. Eq. (10)]. On the other hand, by
adding correlations in the disorder distribution, particularly
long-ranged correlations, the emergence of extended states
in the middle of the band [49,54,56] and their interplay
with localized states beyond the mobility edges bring in very
interesting resources for entanglement distribution as we are
going to show now.

In order to see how far the initial excitation propagates
depending on the degree of correlation α [see Eq. (3)], let

FIG. 3. Entropy for a block of spins, S[ρL], versus its size L

when tJ = 40 for many disorder regimes provided by α including
uncorrelated disorder (α = 0) and the noiseless condition. Each block
involves groups of spins ranging from (x0 + 1)-th to the L-th spin,
with x0 being the initial site (which is out of the block) located in the
middle of the chain. The entanglement saturation threshold sets the
extension of the wave-function in a given time. Note it happens quite
rapidly for lower values of α. The inset provides a zoomed-in view of
the saturation region for higher values of α. Plots were obtained from
exact numerical diagonalization of Hamiltonian (2) for N = 400 and
S[ρL] was averaged over 102 independent realizations of disorder.

us first analyze the entanglement entropy for a given block of
spinsAL of size L as defined in Eq. (6). We initialize the system
as a single flipped spin located at the middle of the chain (say,
the zeroth site |x0 = 0〉) and evaluate the block entropy for
increasing L where each block begins from the first-neighbor
site x0 + 1 and goes forward until the Lth site. The reason
for choosing such a partition is the following: As the block
entropy, Eq. (6), solely depends on the overall probability of
finding the excitation inside the block, whenever its saturation
occurs for a given value of L, in a given instant, it means
that the excitation has not yet reached (or never will reach)
the subsequent sites (that is, x > L and x < −L). Moreover,
the saturation value accounts for how much the initial site
is still populated. Note that the wave function spreads out
symmetrically and, as already mentioned, the entropy reaches
its maximum value, that is, 1, when p = 1/2.

The behavior of the entanglement entropy as a function
of the block size L is reported in Fig. 3 for several disorder
configurations (including the noiseless case for comparison).
We stress that every quantity shown in this work is properly
averaged over about 102 independent disorder realizations.
In Fig. 3 we note that each curve saturates after crossing a
threshold value for L, as mentioned before. This indicates
the spot after which p = ∑

i∈AL
|wi |2 is no longer added up.

The saturation takes place quite fast, as expected, for the un-
correlated disorder scenario (α = 0) in which pure Anderson
localization sets in. A similar profile is maintained for low
degrees of correlation, though for higher L. The behavior
suddenly changes for α = 2 and above, where the disordered
potential landscape is characterized by self-similar persistent
increments [see Fig. 1(b)]. Now, the entropy slowly increases
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FIG. 4. Snapshots of concurrence distribution for (a) α = 0 (uncorrelated disorder), (b) α = 1, (c) α = 2, and (d) α = 3 averaged over 102

independent realizations of disorder. The initial state was set in the middle of a chain with N = 2048 sites. We set Ci,j = 0 for i = j . The
first, second, and third columns correspond to times tJ = 20, 40, and 60, respectively. Here, we clearly see that long-range correlations in
the disorder distribution push the entanglement wave to reach distant sites, first extending the localization length and then setting up genuine
propagating modes when α = 2 and higher.

with L indicating that extended states are indeed taking part
in the evolution. Therefore, α = 2 marks the transition point
between the localized and delocalized regimes [49,56]. We
discuss how it affects the distribution of entanglement in a
moment. Note that the excitation has reached out about the
80th spin corresponding to the ordered curve, which is the
farthest it can go for tJ = 40 [cf. Eq. (16)]. Also, since in this
case the entropy goes to 1, the excitation has almost completely
left the initial site (see inset of Fig. 3).

Now, let us take a more detailed view on the way
entanglement is distributed between a pair of spins along the
chain in the disordered scenario. Figure 4 shows time snapshots
of the concurrence grid for several values of α. In the case
of uncorrelated disorder [Fig. 4(a)], the concurrence barely
propagates, as expected, since the spin excitation remains
strongly localized at the initial site. The slightest amount of
long-range correlations in the disorder distribution allows for
a broader distribution of entanglement. Already for α = 1
in Fig. 4(b), the concurrence between the initial site and
the remaining ones extends further out. In other words, the
localization length effectively increases. Interestingly, a closer

look at the first panel of Fig. 4(b) (that is, for tJ = 20) indicates
the appearance of a (very) small envelope surrounding the
central peak that rapidly dissipates with time. This is signaling
the emergence of weakly localized modes [49,54,56] although
the dynamics is still ruled by the strongly localized modes. As
we saw in Fig. 3, α = 2 sets the transition to a delocalizedlike
behavior. In terms of entanglement dynamics [see Fig. 4(c)],
the interplay between localized and delocalized states keeps
the central spin able to correlate with distant sites. At the
same time the propagating wave front responsible for that also
generates entanglement between neighboring spins and their
equidistant counterpart. If we increase the degree of noise
correlations, i.e., by increasing α, the entanglement involving
the initial site is substantially decreased [Fig. 4(d)] and the
distribution pattern resembles that of the ordered case shown in
Fig. 2(b). Indeed, if α is large enough the summation in Eq. (3)
reduces to a single cosine function in the asymptotic limit
and thus the local magnetic field acquires a smooth periodic
behavior in space, thereby suppressing localization.

In order to show the highest amount of pairwise entan-
glement one is able to create during the process discussed
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FIG. 5. Maximum concurrence Cmax
i,j for (a) α = 0 (uncorrelated

disorder), (b) α = 1.0, (c) α = 2.0, and (d) α = 3.0 averaged over
102 independent realizations of disorder. The scale goes from 0 (dark
spots) to 0.1 and above (bright spots). The system’s parameters are
the same as from Fig. 4 and the time window considered for Cmax

i,j

was tJ ∈ [0,200], thus making sure that the entanglement wave has
passed through the neighborhood of the initial site (which we denote
as the zeroth site for ease of use) without reaching the boundaries
of the chain (N = 2048). As we move from uncorrelated disorder
towards long-range-correlated disorder, there are many configurations
available for entanglement distribution.

above, in Fig. 5 we plot the maximum concurrence evaluated
in a given time interval. That ultimately provides a bird’s-eye
view on the way entanglement is shared among individual
spins. In Fig. 5(a) the prominent core witnesses the fully
localized nature of the underlying Hamiltonian spectrum.
For α = 1 [Fig. 5(b)], although long-range correlations are
already building up, the latter are not enough for breaking
down the localized behavior, though the concurrence involving
the central site widens out considerably. The value α = 2
corresponds to the critical correlation degree signaling the
emergence of extended states [49]. In this case, entanglement
results from the coexistence between order and disorder, thus
inducing propagating modes in the dynamics while keeping
some residual localizedlike behavior. This results in the very
interesting pattern shown in Fig. 5(c). Extended states then
take over the dynamics for higher degrees of correlation as
shown Fig. 5(d) for α = 3.

Figure 6 provides a more detailed side view of the
distribution of Cmax

0,j [Fig. 6(a)] and Cmax
30,j [Fig. 6(b)] ranging

over about a hundred sites. Note that the central site is able
to establish a higher entanglement with distant sites when
α = 2, suddenly decreasing when α = 3. Also, for α = 2 and
above, note the formation of symmetric peaks accounting for
the entanglement in between small groups of neighboring spins
and their equidistant parts.
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FIG. 6. Distribution of maximum concurrence Cmax
i,j for fixed

(a) i = 0 (initial site) and (b) i = 30 and varying α. Those are
basically detailed side views of Fig. 5 involving a much smaller
region. Again, the time window was set to tJ ∈ [0,200] and Cmax

i,j

was averaged over 102 independent realizations of disorder.

C. Entanglement transmission

So far we have been discussing the generation and spreading
of entanglement from the origin and analyzing mostly its
distribution patterns as a function of the degree of correlations
in the disorder distribution. We now turn our attention to a
slightly different problem, which is the task of transmitting
entanglement along the chain [1]. Suppose we prepare a
maximally entangled state of the form |ψ(0)〉 = 1

2 (|0s1s ′ 〉 +
|1s0s ′ 〉) involving spin s, belonging to the chain, and an external
(uncoupled) one s ′. Because of the Hamiltonian dynamics,
the component of the wave function featuring the excitation
inside the chain evolves and causes the entanglement, initially
present only between site s and s ′, to get shared among
the latter and other spins of the chain. Hence, the figure of
merit of the entanglement between a given spin r (belonging
to the chain) and the external spin s ′ is given by Cr (t) ≡√

2|wr (t)| = |〈r|Û(t)|s〉|. This can be worked out by using the
same dynamics discussed previously.

It should be noted that single-particle states saturate the
Coffman-Kundu-Wootters conjecture [68] (see also Ref. [12]),
which means that all the entanglement present in the system
is encoded by pairwise correlations only (there is no higher-
order entanglement). As a consequence, it is easy to check
that

∑
r C2

r = 1. Hence, we can use this fact to build up proper
entanglement transmission and reflection coefficients of the
form [13]

T = lim
t→∞

∑
r>r0

C2
r (t), R = lim

t→∞

∑
r<r0

C2
r (t), (18)

where r0 denotes a particular reference spin which the above
coefficients stand for.

Figure 7 shows the transmission and reflection coefficients
as a function of the degree of correlations α for several
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FIG. 7. Entanglement transmission and reflection coefficients
[Eq. (18)] versus α for (a) r0 = 20, (b) r0 = 30, (c) r0 = 40,
and (d) r0 = 50. The initial state was a maximally entangled pair
|ψ(0)〉 = 1

2 (|0s1s′ 〉 + |1s0s′ 〉) with the sender prepared in the first site
(s = 1) in a chain of size N = 400 (note that now, for convenience,
we are numbering each spin regularly from 1 to N ). The calculations
were performed without letting the wave function reach the other end
of the chain and the coefficients were evaluated at times when C2

r (t)
(averaged over 102 samples) achieved a stationary behavior in order
to account for the long-time regime.

reference spins r0. The initial state was |ψ(0)〉 = 1
2 (|s〉 + |s ′〉),

with s denoting the first site in a chain of 400 spins. We
stress that all the calculations were performed before the
wave function reached the other boundary and T and R were
evaluated at times when C2

r (t) (averaged over the number
of realizations) achieved a stationary behavior. Unlike the
α = 0 (uncorrelated disorder) case, where the transmission
coefficient is, for all practical purposes, negligible already
when considering the propagation of entanglement across the
20th site of the chain [Fig. 7(a)], there is a quite significant
transmission gain when α �= 0. In Fig. 7(a), for instance, it
goes from T ≈ 0.05 to T ≈ 0.7 when α = 3. Even though
T slowly diminishes (see Fig. 7) as we get more distant
from s, i.e., by increasing r0 in Eq. (18), we nevertheless
see a monotonic increase of the transmission coefficient by
increasing the disorder correlations. Furthermore, we note that
T surpasses R when α > 2, thus once again revealing the
presence of delocalized states in the spectrum [49,56].

V. CONCLUDING REMARKS

In our work, we addressed the problem of creating and
distributing entanglement in disordered 1D spin chains by

means of the time evolution of a single flipped spin prepared
on the fully polarized state. We considered on-site diagonal
disorder (that is, on the local magnetic field distribution) with
long-range spatial correlations resulting from the power-law
nature of the spectral density, S(k) ∝ 1/kα . A rich variety of
dynamical regimes for the entanglement we reported here has
been generated by varying a single parameter, namely, the
degree of correlations in the on-site magnetic field disorder
distribution, α. This parameter is known for dictating the
appearance of extended states in the middle of the band [49,54],
thus allowing for sending single-particle pulses outwards
while still maintaining part of the wave-function amplitude
at the center of the chain. We also studied the propagation
of entanglement from an initial maximally entangled Bell
state through the chain and found that there is a significant
improvement in the transmission coefficient by increasing α.

In general, correlated disorder may naturally be present
in solid-state devices due to the lack of full experimental
control over the system itself as well as over the surroundings.
However, as long as internal correlations of a specific kind
generate the desired eigenfunctions profile, it should be much
more convenient to cope with disorder than fighting against
it, since the latter strategy may demand more resources. In
other words, when designing a given quantum information
processing protocol to be realized in a disordered system, one
could think of increasing the amount of correlations of such a
disorder, instead of trying to get rid of it.

Although we have considered only diagonal disorder, a
similar behavior is expected for off-diagonal fluctuations, i.e.,
a disordered set of exchange interactions albeit with some
quantitative differences [54]. In principle, our findings can be
probed in, e.g., ultracold atoms in optical lattices [25] in which
great advances such as single-site addressing [24] have been
achieved.

Further extensions of our work include investigating the
role of internal correlations in disordered channels for high-
fidelity state transfer based on weakly coupled communicating
parties [4,27,43]. In these models, even though the bulk of
the chain is usually weakly populated during the transmission
process, the presence of extended eigenstates in the bulk is
crucial to support long-distance communication protocols.
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