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Rogue waves in quantum lattices with correlated disorder
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We investigate the outbreak of anomalous quantum wave-function amplitudes in a one-dimensional tight-
binding lattice featuring correlated diagonal disorder. Such rogue-wave-like behavior is fostered by a competition
between localization and mobility. The effective correlation length of the disorder is ultimately responsible for
bringing the local disorder strength to a minimum, fueling the occurrence of extreme events of much higher
amplitudes, especially when compared to the case of uncorrelated disorder. Our findings are valid for a class
of discrete one-dimensional systems and reveal profound aspects of the role of randomness in rogue-wave
generation.
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I. INTRODUCTION

Rare and unpredictable events carrying huge impact are
widespread in nature, from stock markets to physical sciences.
Outliers may change the course of things more often than we
are prone to think, sometimes leading to hazardous conse-
quences. One example is the emergence of rogue waves in
the ocean. The famous Draupner wave recorded in 1995 at
a gas platform in Norway was twice as big as the significant
wave height of the area. This happened to be the first scientific
evidence of a rogue wave [1] and led to a burst of interest
in the field as studies began to suggest that these extreme
events would occur more frequently than assumed from or-
dinary Gaussian statistics [2]. About a decade later, Solli
et al. introduced rogue waves in optics based on observations
made on fiber supercontinuum generation in the presence of
noise [3].

The analogy drawn between oceanic rogue waves and ex-
treme instabilities in optics associated to long-tailed statistics
set the stage for a number of theories aimed to explain the
physical mechanisms behind their generation. This is usu-
ally done in the framework of the nonlinear Schrödinger
equation describing the evolution of the wave envelope,
with the modulation instability being one crucial nonlin-
ear focusing mechanism responsible for rogue events. Much
of the effort nowadays has been directed toward estab-
lishing whether and which linear or nonlinear processes
play the biggest roles [4–11]. Oceanic rogue waves, for
instance, may result from various mechanisms in action,
such as constructive interference of random fields, modula-
tional instability, and soliton modes, depending on sea and
wind conditions [12,13]. Even though there is no defini-
tive consensus on that matter, neither robust ways to predict
where and when rogue waves will occur, noise and ran-
domness seem to be key ingredients for their occurrence
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[11,14,15] (deterministic rogue waves are also discussed in
Refs. [4,5]).

Some degree of disorder is paramount for generating rogue
waves via linear mechanisms in particular [11,14–25]. Very
recently, this was addressed in the context of quantum walks
[25]. Therein, the authors primarily sought to explore the
(hitherto elusive) relationship between Anderson localization
and rogue wave manifestation. They reported a minimal dis-
order threshold ∝ N−1/2 (N being the number of sites) above
which rogue waves were created, whereas intermediate dis-
order levels would maximize the chances of seeing one due
to a proper balance between trapping and mobility (see also
Ref. [21]). Such results, besides bringing the rich subject
of rogue waves up to the realm of quantum transport, add
important elements to the issue of the actual role played by
randomness.

With those ideas in mind, here we set out to track the
dynamics of rogue waves on a single quantum particle prop-
agating in a lattice featuring correlated disorder. Anderson
localization theory settles that all single-particle eigenstates
are exponentially localized for any amount of uncorrelated
disorder in one and two dimensions [26]. This can be violated,
however, when the disorder displays intrinsic correlations
[27–29]. Scale-free correlations, for instance, are known
to support a metal-insulator transition with sharp mobility
edges [27].

In this article our goal is to investigate the development of
sudden, anomalous quantum amplitudes due to the interplay
between localized and extended states. Indeed, long-range
correlated fluctuations in the random input phases was re-
cently shown to produce rogue waves way above the threshold
in an experiment on linear light diffraction in 1D [22].

We look at a particular kind of correlated disorder in which
a single parameter is able to control the typical correlation
length and, in turn, the local disorder strength. The latter is
found to be a crucial factor underlying the generation of the
rogue waves for it sets up the right amount of wave-function
mobility. This boosts not only the number of occurrences, but
also the average rogue wave amplitude.
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II. MODEL

We consider a single quantum particle propagating in
a one-dimensional array described by the tight-binding
Hamiltonian

H = J
N∑

n=1

(|n〉〈n + 1| + |n + 1〉〈n|) +
N∑
n

εn|n〉〈n|, (1)

where J is the nearest-neighbor hopping strength, εn is the
on-site potential, and states |n〉 represent the location of the
particle and span the whole Hilbert space. As such, an arbi-
trary quantum state can be written as |�〉 = ∑

n ψn|n〉, with
the normalization condition

∑
n |ψn|2 = 1. The time evolution

of the wave function ψn is given by the Schrödinger equation

i
d

dt
ψn = ψn+1 + ψn−1 + εnψn, (2)

where h̄ = J = 1 without loss of generality.
Here we go beyond the standard case of uncorrelated dis-

order and consider that the local potentials εn are embedded
with correlations, as given by

εn =
∑

m

Zm

(1 + dn,m/A)2
, (3)

where Zm is a random number ∈ [−1, 1], dn,m is the Euclidean
distance between sites n and m, and A controls the correlation
length of the series. As we impose periodic boundary con-
ditions |N + 1〉 = |1〉, in order to properly evaluate dn,m it is
convenient to set the location of each site n through the co-
ordinates (xn = R sin θn, yn = R cos θn), with θn = (2π/N )n,
rendering dn,m =

√
(xn − xm)2 + (yn − ym)2. The disordered

sequence is further normalized to have zero mean and unit
variance.

To see how the above disorder configuration plays out with
the correlation parameter A, in Fig. 1(a) we plot the autocorre-
lation function C(r) = cov(εi, εi+r ) = ∑N−r

i=1 εiεi+r/(N − r).
Upon increasing A, C(r) exhibits a slower decay, as expected
from Eq. (3). We are then able to set an effective correlation
length Lc by fitting C(r) ∝ e−r/Lc . Figure 1(b) shows that
Lc ∝ A, thereby affirming what the latter stands for.

III. RESULTS

We are ready to search for the occurrence of rogue waves
and address the role of the correlated disorder. In all simula-
tions below, the set of equations given in Eq. (2) is numerically
solved by employing a high-order Taylor expansion of the
time evolution operator:

U (�t ) = exp(iH�t ) = 1 +
n0∑

l=1

(iH�t )l

l!
, (4)

with time step �t = 0.01 J−1 and n0 = 20, which is enough
to produce smooth outcomes and keep the norm conserved
during the whole time interval. In order to avoid ambiguity
between a rogue wave event and trapping of the wave function
due to Anderson localization, we set ψn(t = 0) = 1/

√
N for

all n [25].
Figure 2 shows typical scenarios of rogue waves, as told

by the probability amplitude of the particle wave function
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FIG. 1. (a) Autocorrelation function C(r) = cov(εi, εi+r ) vs r
for many values of the correlation parameter A, averaged over 100
independent samples. (b) Effective correlation length Lc ∝ A.

|ψn(t )|2, for different values of the correlation strength A. For
weak correlations the evolution is characterized by sparse,
low-amplitude waves that eventually add up to produce the
rogue events, as shown in Fig. 2(a), around t = 3000/J. As
the correlation strength is increased, the background becomes
more inhomogeneous—a fundamental trait in the genera-
tion of rogue waves via linear processes [11]. There sets in
distinct amplitude domains in space, indicating that A is push-
ing for weaker local fluctuations in the disorder distribution
(to be addressed in a moment). As a consequence, rogue
waves of exceptionally higher amplitudes are likely to occur
[cf. Fig. 2(d)].

We will not be using here any particular rogue-wave
criteria. One measure employed in various contexts is the
significant wave height, commonly defined as twice the av-
erage of largest one-third of values in a data set [12]. An
event is thus considered a rogue wave whenever it beats that
level. Considering our initial state and the results obtained in
Ref. [25], that deals with a similar class of problem, such a
threshold would be of the order of 1/N . As our following
analysis is built on extreme-value statistics, the data is heavily
loaded with amplitudes well above that mark.
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FIG. 2. Snapshots of the space-time evolution of the particle wave-function probability highlighting typical rogue wave events for different
correlation strengths: (a) A = 1, (b) A = 25, (c) A = 50, and (d) A = 100. Two-dimensional graphs display spatial and temporal cross
sections for the largest amplitudes. Time is expressed in units of J−1.

Let us now obtain one of the limiting extreme-value dis-
tributions, according to the Fisher-Tippett-Gnedenko theorem
[30]. In order to do so, we pick the maximum wave-function
amplitude in space at each time step for several independent
realizations of the disorder. The stacked outcomes are seen
in the probability density functions (PDFs) shown in Fig. 3
for different degrees of correlation A. Note that this effec-
tive correlation length indeed brings forth higher amplitudes.
However, there is a threshold value for A above which the
right tail of the distribution begins to deflate (rare, extreme
rogue waves can still develop). To learn more about this non-
monotonic relationship between the rogue-wave maximum
amplitudes and the correlation parameter A, we portray in
Fig. 4 the maximum amplitudes |ψ |2max allowed at a probabil-
ity level just above 10−7 (see Fig. 3). This is done in order to
avoid extremely rare outcomes. The scaling with N in Fig. 4 is
employed so we can filter out finite-size effects and focus on
the role of the correlation degree only. Compared with what
one would obtain from uncorrelated series of the potential εn

(cf. dashed curve in Fig. 4), the rogue waves can reach almost
twice as large amplitudes when supported by the correlated
disorder.

We also find that all the skewed PDFs shown in Fig. 3
belong to the Gumbel class of extreme-value distributions,
fitted by P(x) ∝ exp[−(αx + β exp(−αx))]. Similar behavior

is found in quantum walks featuring uncorrelated disorder
[25], meaning that the wave-function fluctuations are well
described by processes involving independent and identically
distributed random variables. The Gumbel distribution applies
whenever the parent distribution is of the form p(x) ∼ e−xδ

,
with δ > 0 [30]. So that is the expected output from a sum of
random complex amplitudes (phasors) in the limit of a large
number of contributions, where the Rayleigh exponential law
for |ψ |2 is obtained (δ = 1) [31]. In Fig. 5 we show the parent
distributions p(|ψ |2) for distinct values of A obtained numer-
ically. For A > 1 the distributions are essentially exponential
(rendering a straight line in the log-linear plot), aside from the
pronounced tail signaling the occurrence of rogue waves. The
exception is noted when A = 1, whose distribution displays a
bent tail. This suggests that something in the random phasor
sum underlying the quantum state evolution is preventing it
to reach the Rayleigh regime. Note that a delocalized input
leads to

ψn(t ) =
∑

n′

(∑
k

e−iEktvk,nvk,n′

)
, (5)

where vk,n is the kth eigenstate of the Hamiltonian projected
onto n and Ek its corresponding eigenvalue. The expression
above can be seen as a sum of random phasor sums [31]. Now,
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FIG. 3. Extreme-value distributions generated by sorting up the
maximum values of |ψn|2 at each time step during the whole
evolution (up to t = 15 000/J with �t = 0.01/J) for 500 indepen-
dent samples of a disordered chain with N = 100 sites when A =
1, 25, 50, 100. Bottom panels show the fitted Gumbel distribution
(red curve) of the form P(x) ∝ exp[−(αx + β exp(−αx))].

given A = 1, the system is effectively under the influence of
strong uncorrelated disorder. As such, exponentially localized
eigenstates will lead those phasor sums carrying n ≈ n′ to
other distributions other than Rayleigh. Further details will be
reported elsewhere [32].

We point out that a finite correlation length should maintain
the asymptotic Gumbel form whenever the correlation length

FIG. 4. Maximum wave-function probability amplitude |ψ |2max

scaled with N (excluding exceptionally rare events) for a range of
A/N values.

FIG. 5. Distribution of |ψ |2 accumulated from an ensemble of
103 independent realizations of disorder for a chain with N = 100
sites, each evolving up to t = 15 000/J. Correlation parameters
are A = 1 (circles), A = 30 (triangles), and A = 90 (diamonds),
respectively.

within the series remains much smaller than its length [30].
And we must distinguish two correlation lengths that appear
in our model. The first one is over the random potential that
proportionally grows the correlation parameter A. The second
(and most important) one is the localization length of the
Hamiltonian eigenstates, which depends on the local disorder
variance, as we will see shortly.

The regularity of rogue wave events occurring on systems
featuring static disorder can be predicted to some extent based
on the energy resonance conditions across the lattice. Either
very weak or very strong levels of disorder should suppress
the onset of anomalous wave-function fluctuations. Some
studies report that an optimal balance between localization
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FIG. 6. Mean number of sites actively involved in the generation
of rogue waves �nRW vs correlation strength A, averaged over 500
independent realizations of disorder, for times up to t = 15 000/J
and N = 100. Note that the values of A that give the highest �nRW

also lead to outbreaks of very intense rogue waves.
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FIG. 7. (a) Series of the on-site potential εn considering A =
1, 25, 50, and 100. (b) Local standard deviation σL0 as a measure of
the local disorder strength. Weaker local fluctuations are obtained at
intermediate values of A, the same range that renders better chances
of observing rogue waves of higher amplitudes.

and mobility can maximize their chances to happen [21,25].
Here, this balance is effectively imposed by the correlation
level A. To show there is indeed a coordinated dynamics
taking place, let us track how many sites, for a given disor-
dered sample, are mostly involved in those extreme events.
Defining π (n) as the probability of a rogue occurring at site
n, we compute the mean number of participating sites as
�nRW = 1/[

∑
n π (n)2], which ranges from 1 (fully biased)

to N (equally distributed). Figure 6 displays this quantity
against the correlation parameter A. Again, the nonmonotonic
behavior is clear and indicates that intermediate values of A
implies more sites actively participating in the generation of
rogue waves. In turn, waves of higher amplitudes become
more likely (cf. Figs. 3 and 4).

Last, we complement the above discussion by taking a
look back at the potential series given by Eq. (3). Figure 7(a)
shows how it typically sets up along the lattice. For A = 1,
the series features a white noise (almost uncorrelated) profile.
Then, at A = 25 local fluctuations are drastically reduced. As
we further increase the effective correlation length, a rougher

landscape is obtained, but still carrying a predominant har-
monic component. To put all that together, let us compute the
local disorder strength in terms of the local standard deviation
σL0 = (

∑M
k=1 σk,L0 )/M within a segment with L0 sites, where

σk,L0 =

√√√√√ kL0∑
n=(k−1)L0+1

ε2
n

L0
−

⎛
⎝ kL0∑

n=(k−1)L0+1

εn

L0

⎞
⎠

2

. (6)

Results are shown in Fig. 7(b), where we are able to confirm
once for all that intermediate values of A makes for minimum
local fluctuations, which is consistent with the smooth poten-
tial landscape seen in Fig. 7(a). This increases the localization
length of the eigenstates of the Hamiltonian (that typically
scales as 1/σ 2

L0
) while keeping it much smaller than the size

of the system.
We emphasize it is the local variance (not the global one)

that stands as a proper measure of the disorder strength. This
is supported by the fact that the statistical properties of the
extreme events are closely correlated to the nonmonotonic
dependence of the local disorder variance on the correla-
tion parameter A even when the global disorder is fixed.
While these two disorder measures coincide for uncorrelated
potentials, they capture distinct aspects of the randomness in
the presence of correlations. Therefore the reported results
here cannot be derived from a trivial rescaling of disorder
parameters.

IV. CONCLUDING REMARKS

We explored the intrinsic role played by correlated disorder
on the emergence of rogue waves in a simple quantum tight-
binding model. The amplitude of the particle wave function
was found to exhibit strong anomalous fluctuations inher-
ently unpredictable in time and space. An approach based on
extreme-value statistics revealed that such fluctuations follow
a Gumbel distribution, belonging to the same class as those
reported in a quantum walk featuring uncorrelated disorder
[25].

We learned that intermediate values of the correlation pa-
rameter A, acting here as an effective correlation length, brings
down the local disorder strength. This properly enhances the
mobility of the wave function (by spanning eigenstates with
larger localization lengths) and so the number of sites on
which rogue-wave events take place, which in turn amplifies
their characteristic amplitude, almost twice as large when
compared to uncorrelated scenarios [21,22,25].

While disorder must be present to promote random fluc-
tuations of the wave function, the underlying single-particle
eigenstates must be wide enough in order to allow the linear
superposition of the many components needed to produce
localized waves in space and time. A general result we can
establish is that rogue waves are expected to occur more often
in the regime of weak disorder.

Our findings are general to a class of 1D discrete disor-
dered systems and bring about another perspective on their
dynamics as well as reveal fundamental aspects of the role
of randomness in the generation of rogue waves. They are
supported by results on random branched Hamiltonian flows,
where weak correlated potentials are known to have a major
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influence in the burst of extreme fluctuations associated to
caustics [16,33–35]. Indeed, their universal statistics are ap-
plied to a wide range of random potentials [16,34]. A key
point we unveil here is that the localization length is the
relevant scale dictating the occurrence of the rogue waves,
regardless of the profile of the correlated series. In fact, when
the correlation is nearly absent the distribution of |ψ |2 does
not approach the Rayleigh exponential form [see Fig. 5]. In
this case, the local disorder variance is high enough to render a
state evolution dominated by a few strongly localized modes.
If we make an analogy with established results in statistical
optics [31], too much disorder inhibits the usual fully devel-
oped speckle regime. This requires the contribution of a large
number of random complex amplitudes as well as statistical
independence between them [31]. The specific form of the
distributions that can be obtained on a strongly disordered
lattice deserves further investigation [32].

Deviations from the Rayleigh law are also expected if de-
coherence is involved. In [35] Metzger et al. report a transition
from the exponential distribution to a log-normal distribution
when phase coherence of the waves is lost. In a general
quantum setting this could investigated in terms of quantum
dynamical maps. Future works should also address the role of
particle interaction in extreme events, especially in the many-
body regime where caustics yields to heavy tailed statistics
[36]. In this context, rogue wave events can be associated to
localization in Fock space. Despite the dynamics being much
more complex, information theory measures [37] may be in
place to access the onset of such intrinsic turbulent behavior.
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