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Rogue waves in discrete-time quantum walks
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Rogue waves are rapid and unpredictable events of exceptional amplitude reported in various fields, such as
oceanography and optics, with much of the interest being targeted towards their physical origins and likelihood
of occurrence. Here, we use the all-round framework of discrete-time quantum walks to study the onset of those
events due to a random phase modulation, unveiling its long-tailed statistics, survival time, and dependence upon
the degree of randomness. We find the minimal disorder strength allowing for their occurrence to scale ∝ N−1/2,
N being the number of sites. Moreover, an extreme-value analysis converges to the Gumbel class of limiting
distributions.

DOI: 10.1103/PhysRevA.106.012414

I. INTRODUCTION

Rogue or freak waves, unpredictable and rare huge walls of
water appearing from nowhere and vanishing without a trace,
have been known and feared for centuries by seafarers. The
first solid account of the phenomenon took place in 1995 when
data collected on the Draupner oil platform in the North Sea
revealed a 26-m wave rising out of a background with about
half significant wave height [1]. Years later, analogies between
such ocean wave phenomena and light propagation in optical
fibers surged in the framework of the nonlinear Schrödinger
equation [2]. Since then, interest in ubiquitous wave phenom-
ena displaying long-tailed statistics, when outliers occur more
often than expected from Gaussian statistics, has skyrocketed
in various fields (for a recent review, see Ref. [3]). Optics,
particularly, has been a powerful test bed for investigating
rogue waves owing to the spatial and timescales involved
and, in addition, optical rogue waves include an assortment of
novel phenomena, not necessarily featuring a hydrodynamics
counterpart [3].

One of the key challenges in the field is to find out pre-
cisely how those events emerge so as to be able to predict
and control them. There is a long-standing debate on whether
rogue waves are primarily driven by linear or nonlinear pro-
cesses [4] and what is the role of noise and randomness [5].
It is natural to assume that nonlinearity plays an important
role due to modulational instability [6,7], collisions between
solitons [8], and so forth. On the other hand, some studies
suggest that the linear interference of random fields is cru-
cial [9–20], with nonlinear effects responsible for extra wave
focusing [21–23]. Indeed, linear models can display rogue
waves on their own when augmented with the right ingredients
as shown in Ref. [10]. This has been shown experimentally
in microwave transport in randomly distributed scatterers [9],
two-dimensional (2D) photonic crystal resonators [13], and
very recently by measuring linear light diffraction patterns
in the presence of long-range spatial memory effects in the
random input [18].

Interest in linear rogue waves has been increasing con-
siderably over the past few years. Yet, it is surprising that

quantum mechanics has barely been taken into consideration.
Even though the dynamics of a single quantum particle can be
mapped into linear optics, investigating the onset of roguelike
events in the very domain of quantum mechanics has its own
appeal. It could, for instance, shed new light on the dynamics
of disordered systems and related features such as Anderson
localization. With that in mind, we set about to explore the
occurrence of rogue quantum amplitudes using the discrete-
time quantum walk (DTQW) approach [24]. It is basically
a cellular automaton [25] whose updating rules are run by a
preset sequence of quantum gates. Given recent experimental
advances in the field [26–28] as well as their wide range of ap-
plications, from quantum algorithms [29] to the simulation of
involved phenomena in condensed matter physics [15,30–34],
DTQWs make for a suitable starting point.

We report the manifestation of rogue waves in the
Hadamard one-dimensional DTQW induced by random phase
fluctuations. We do so by unveiling the long-tailed statistics
of the occupation probability amplitudes (which is analogous
to light intensity in optics) over the space-time set of events.
We show that an intermediate level of disorder scaling as N−ν

maximizes the likelihood of rogue events. That has to do with
a fair balance between localization and mobility, for which
the localization length ∝ N2ν , N being the number of sites.
Furthermore, an extreme-value analysis is carried out for the
amplitude block maximum over time and we find that the
resulting distribution falls into the Gumbel class.

II. QUANTUM WALK MODEL

We consider a single-particle DTQW in one dimen-
sion [24] defined by a two-level (coin) space HC = {|↑〉, |↓〉}
and a position space HP = {|n〉}, such that the full Hilbert
space reads H = HC ⊗ HP. An arbitrary state at a given in-
stant t can be written as |�(t )〉=∑N

n=1[an(t )|↑, n〉 + bn(t )|↓,

n〉], satisfying the normalization condition
∑

n Pn(t ) =∑
n[|an(t )|2 + |bn(t )|2] = 1.
The quantum walker evolves as |�(t + 1)〉 = Ŝ(Ĉ ⊗

Ip)D̂|�(t )〉, where the conditional shift operator Ŝ is
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responsible for the nearest-neighbor transitions Ŝ|↑, n〉 = |↑,

n + 1〉 and Ŝ|↓, n〉 = |↓, n − 1〉 (assuming periodic boundary
conditions), Ĉ = (|↑〉〈↑| + |↑〉〈↓| + |↓〉〈↑| − |↓〉〈↓|)/√2 is
the standard Hadamard coin, Ip is the identity operator acting
on the N-dimensional position space, and

D̂ =
∑

c

∑

n

eiF (c,n,t )|c, n〉〈c, n| (1)

is the phase-gain operator, with F (c, n, t ) being a real-valued
arbitrary function [35] and c = ↑,↓. Periodic boundary con-
ditions are not essential for the generation of rogue waves and
are set to filter out barrier reflections from the statistics. Given
the flexibility in choosing F (c, n, t ), one is able to produce
various dynamical regimes. Setting F = 0 renders the stan-
dard Hadamard quantum walk in which walker spreads out
ballistically [24]. Here, instead, we set a static random phase
modulation such that F (c, n, t ) = F (c, n) = 2πν, where ν

is a random number uniformly distributed within [−W,W ],
with W being the disorder width. As this setting can lead to
Anderson localization [15,32], we ought to inquire whether
rogue waves can be supported given proper initial conditions
and the amount of noise embedded in F (c, n).

III. RESULTS

In order to avoid ambiguity between an actual rogue event
(a rare one) and the inevitable Anderson localization in the
statistics, we initialize the system in a coin-unbiased [36],
fully delocalized state |ψ (0)〉 = 1√

2N

∑N
n=1(|↑, n〉 + i|↓, n〉).

Note that an initial localized state would only invite a few
modes to act in the evolution rendering narrow periodic beat-
ings in time rather than the unpredictable transient nature of
a rogue wave. Random phase modulation is applied at every
step by gate D̂ [see Eq. (1)] so as to foster inhomogeneity
and, as a result, fragmentation of the walker wave function.
These two ingredients have been proved to be crucial for the
development of linear rogue waves [10].

Let us now establish the criteria to identify the rogue
waves. Following the standard procedure as in oceanography
and optics [3,37], we define a occupation probability threshold
Pth as the mean of the largest one third of values on a full
space-time record. A rogue-wave event is counted whenever
Pn(t ) > 2Pth.

Figure 1 shows a snapshot of a typical rogue-wave event
with Pn ≈ 5Pth alongside a detailed look over the amplitude
record over space and time. The peak shares all the standard
characteristics of a rogue wave: Besides the large amplitude
in comparison to the background, it is unpredictable and short
lived.

In Fig. 2 we show normalized probability density functions
(PDFs) of Pn generated by a large ensemble of quantum walk
runs (space-time records with N × steps values) for some rep-
resentative strengths of disorder. Figure 2(b) clearly displays
another key signature of the occurrence of rogue events [3],
which is a positively skewed, L-shaped distribution. It features
a significant number of outliers in the high-amplitude range,
relatively rare among the total number of events yet more than
what one would get from Gaussian statistics.

FIG. 1. (a) Snapshot of the space-time evolution of the occupa-
tion amplitude Pn in the Hadamard DTQW on a ring with N = 100
sites and disorder strength W = 0.1 (single realization). (b), (c) Time
series and spatial profile extracted from (a). The rogue event is seen
at t = 7174.

In order to analyze those distributions in a more quanti-
tative level for the whole range of W , Fig. 3(a) shows the
ensemble-averaged percentage of events fulfilling the con-
dition Pn > 2Pth. Figure 3(b) shows the disorder level Wc,

FIG. 2. Normalized PDFs for (a) W = 0.01 (Gaussian profile)
and (b) W = 0.3 (exponential decay) in semilog scale for an ensem-
ble of 5000 independent realizations of disorder and 104 steps on a
cycle with N = 100 sites. The vertical line marks the threshold above
which the outcome is considered a rogue event.
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FIG. 3. (a) Number of rogue-wave events vs disorder strength W
for N = 50, 100, 200, 400, and 800 sites [from the black (lower) line
to the orange (upper) line], averaged over 5000 independent realiza-
tions of disorder, each running through 10N time steps. This choice
is arbitrary given the evolution is statistically stationary in time.
What affects the localization behavior and the rogue-wave statistics
is the spatial domain N . The inset shows the scaling of the disorder
degree that maximizes the chances of measuring a rogue event Wmax

with N . (b) Disorder strength Wc above which rogue waves have a
finite occurrence probability for distinct threshold levels. The scaling
Wc ∝ N−1/2 unveils that at Wc the localization length χ ∝ 1/W 2 is of
the order of the chain size.

above which there is a finite chance that rogue waves take
place, as a function of N . So as not to be led by the arbitrary
threshold 2Pth, we consider other levels as well. Irrespective of
that, the minimal disorder strength leading to the occurrence
of rogue waves Wc ∝ N−1/2. Such scaling behavior can be
fully explained by stressing that the occurrence of rogue-wave
events here is a disorder-induced phenomenon. Therefore,
they set in when the associated Anderson localization length
χ becomes smaller than the system size N . In the opposite
regime, the system is effectively disorder free. According to
the above consideration, rogue waves will appear whenever
χ < N . In the weak disorder regime, the typical localization
length of the eigenstates of quantum walks under random
phase shifts depends quadratically on the inverse of the dis-
order width, i.e., χ = k/W 2, with k being a constant [15] (it
simply saturates in the strong disorder limit). The condition

for the emergence of rogue waves is thus k/W 2 < N , or
W >

√
k/N , in full agreement with the scaling law reported

in Fig. 3(b). We highlight that such a scaling property as
well as the overall behavior seen in Fig. 3 hold for much
lower number of steps and system sizes within experimental
feasibility [38].

Another curious feature is the optimal level of disorder
Wmax that maximizes the chances of observing a rogue event
somewhere along the system. This suggests that rogue events
are more likely to develop when localization and mobility are
properly balanced. The inset of Fig. 3(a) shows that Wmax ∝
N−ν , with ν ≈ 0.19 over the range of chain sizes considered.
For such a disorder level, the typical localization length scales
as χ ∝ N2ν .

An increased likelihood of the occurrence of rogue waves
between weak and intermediate disorder strengths has been
seen in recent experiments carried out on one-dimensional
(1D) photonic lattices featuring both on-site and coupling
disorder [17]. That also suggests that the interplay between
localization and delocalization is a key ingredient for the
generation of extreme events in linear systems. Furthermore,
correlated fluctuations have been exploited to enhance the
likelihood of occurrence of rogue waves [16,18], some of
these largely exceeding the amplitude threshold (referred to
as super rogue waves) [18].

Large fluctuations in F (c, n) [cf. Eq. (1)] tend to make the
localization effects sharper but it does not necessarily mean
that the occurrence of rogue waves will follow that up. We
shall always keep in mind that a rogue wave is a rare and
sudden event whose amplitude should exceed some threshold
based on the average amplitude background. In order to pro-
duce such abnormal constructive interference at some location
via linear dynamics, we need the proper synchronization of
random waves undergoing different paths and thereby some
degree of mobility. Figure 4 shows the evolution of branch-
ing patterns highlighting the distribution profile of the rogue
events (red spots). In the case of weak disorder, we note
that whenever synchronization conditions are met to form a
rogue wave, it usually covers a few sites in the neighborhood
before disappearing [Fig. 4(a)]. For intermediate disorder, the
rogue events become sparse but more frequent, as a more
complex branching profile emerges [Fig. 4(b)]. If we keep
on increasing the disorder width W , there will be a stage
above which mobility, if any, is restricted to shorter spatial
domains given the onset of local resonances. This is seen in
Fig. 4(c) in the form of well-defined amplitude domains, with
a few of them giving rise to rogue waves now and then. That
is why the rogue-wave likelihood saturates for large W and
barely responds to the system size N [see Fig. 3(a)]. Each
panel of Fig. 4 also shows the normalized inverse participation
ratio IPR(t ) = [N

∑
n Pn(t )2]−1 so we can get a more global

view of the dynamics. Although it does not really capture
the rogue-wave statistics because it reads the entire wave
function at a time, the IPR ultimately tells us that long-time
evolution is not necessary to observe rogue waves because it
displays stationary behavior following a very rapid transient
time. To confirm this property (in the wide sense) we run
Dickey-Fuller tests for an IPR series covering thousands of
steps, all of which resulted in the null hypothesis that a unit
root is present in a first-order autoregressive model of the
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FIG. 4. Samples of space-time branching patterns of Pn(t ) for
disorder widths (a) W = 0.05, (b) W = 0.1, and (c) W = 0.5. Red
(darker) spots are rogue-wave events. Insets show the evolution of
the corresponding normalized IPR.

form yt = α0 + α1yt−1 + εt , the last term denoting uncorre-
lated noise.

We have just seen that if a rogue wave is at time t , de-
pending on W there is a good chance another one will be
observed in the surroundings at t + 1. To account for this
curious feature, let us do the following. For a given run, we
track the appearance of rogue waves at a given time and count
how many steps are covered before no rogue waves are to be
seen. Two or more rogue waves occurring simultaneously at
distinct locations count as one elapsed time. Counting resets
as soon as another occurrence is detected and so forth. We
define τ as the mean of those observations. Figure 5 shows
this quantity versus W for different sizes N . It immediately
tells us the rogue-wave durability correlates with the like-
lihood of observing one [by randomly picking up an event
from the ensemble; see Fig. 3(a)]. Whereas the process of

FIG. 5. Mean rogue-wave time span τ over 3000 steps vs dis-
order strength W , averaged over 1000 independent realizations of
disorder. For intermediate values of W chances are there will be other
occurrences of rogue waves nearby in subsequent steps.

FIG. 6. Extreme-value PDFs in semilog scale for N = 100
and 104 independent realizations of disorder. At each time step,
the maximum probability amplitude Pmax is recorded. The red
(solid) line is a Gumbel-type fitting given by f (z) ∝ exp[−αz −
β exp(−αz)], with (α, β ) being (184.73, 106.12) for (a) W = 0.10
and (232.51, 1002.07) for (b) W = 0.5.

rogue-wave generation here is statistically stationary in time,
it is influenced by N as long as χ ∝ W −2 is reasonably smaller
for constructive interference to build up, usually involving a
number of neighboring sites.

Last but not least, let us perform an extreme-value anal-
ysis by selecting the maximum amplitude at each time step
during the evolution. By doing this block maxima approach,
we are able to establish, for all practical purposes, a set of
identically distributed random variables {y1, y2, . . . , yk}, to
which the Fischer-Tippett-Gnedenko theorem applies [39,40].
In short, it states that given the cumulative distribution of
M = max(y1, y2, . . . , yk ), F (y) = [

∫ y
−∞ p(y′)dy′]k , it is pos-

sible to reach an asymptotic limit for a particular sequence
of scaling factors ak and bk such that limk→∞ F (akz + bk ) =
G(z). The key point is that G(z) comes in three distinct forms
depending on the parent function p(y). For the ones carry-
ing faster-than-power-law decay (which is our situation; cf.
Fig. 2), say p(y) ∼ e−yμ

, μ > 0, the limiting cumulative dis-
tribution is found to be G(z) = e−ez

. Then, the extreme-value
PDF is the Gumbel distribution f (z) = G′(z) = e−z−e−z

, with
z ∈ (−∞,∞). Figure 6 shows that our extreme events indeed
belong to the Gumbel class. For an intermediate degree of
disorder, as in Fig. 6(a), the range of Pmax is visibly more
stretched, which again indicates a pronounced likelihood of
observing a rogue event.

IV. FINAL REMARKS

We reported rogue waves of linear origin in disordered
DTQWs. Such events take place when the disorder strength
breaks through Wc ∝ N−1/2. The highest likelihood of ob-
serving rogue waves is obtained for intermediate values of
randomness that scale as Wmax ∝ N−ν , due to a proper balance
between trapping mechanisms and mobility for which the lo-
calization length χ ∝ N2ν . Further investigations are in order
to build up on the intrinsic relationship between localization
length and rogue-wave generation. We went over the long-tail
profile to prove that disordered Hadamard DTQW falls within
the Gumbel class of extreme-value limiting distributions.

The DTQW studied here offers the possibility of embed-
ding nonlinearity into F (c, n, t ). In this context, solitonlike
pulses and self-trapping have been reported in Refs. [33,35].
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The stage is set for addressing the competition between linear
and nonlinear mechanics in the generation of rogue waves in
quantum walks.

From the experimental side, state-of-the-art photonic plat-
forms [41] are able to perform the simulation efficiently up
to several steps, especially given the quantum walk we in-
vestigated here relies on interference between single-particle
states. To bypass problems with the scalability of resources,
time multiplexing techniques are often employed [38,42–44].
In these, the quantum walker position is encoded in the arrival
times of light pulses performing round trips through a couple
of fiber loops of different lengths. Technological progress
is such that those synthetic lattices are currently capable of
running Bloch oscillations [45], forming solitons [43,44], and
much more [46]. While noise can deteriorate the useful signal

after about 100 round trips [38], the rogue waves we found
here can be generated in just a few time steps as the dynamics
is statistically stationary.

In addition to delivering significant advances in the field
of linear rogue waves, we hope our findings seed interest
in quantum-mechanical extreme events in general. This is of
high value in quantum information processing, where unex-
pected events of that nature could lead to potential hazards
during the dynamics given the unavoidable presence of noise
in quantum devices.
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