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We investigate a single-qubit state transfer protocol along a channel featuring diagonal diluted disorder. 
In the regime where the source and destination sites are weakly coupled to the channel, we report 
the possibility of transmitting quantum states with high fidelity as well as establishing end-to-end 
entanglement in that sort of configuration. We further discuss how the performance of the protocol 
depends upon the availability of extended states within the disordered channel.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The primary effect of disorder in quantum chains is to induce 
the so-called phenomenon of Anderson localization which sup-
presses propagation of the wave function. Based on the Anderson’s 
early works [1] we know that the eigenstates of a single-particle 
tight-binding Hamiltonian with on-site uncorrelated disorder are 
exponentially localized for any degree of disorder in 1D systems. 
On the other hand, it was shown that the presence of correlations 
within the disorder distribution allows for the appearance of delo-
calized states in the band [2–16].

A particular class of correlated disorder put forward by Hilke in 
Ref. [9] consists of an Anderson model on which diagonal disorder 
is distributed throughout the lattice following a given periodic-
ity. This diluted disorder model has been investigated in various 
frameworks since then [9–16]. The standard version of the model 
is based on two interpenetrating sub-lattices, one with random on-
site potentials and the other featuring non-random segments of 
constant potentials. Special resonant energies emerge due to the 
periodicity of those segments. The diluted Anderson model was 
later modified to include a general diluting function which defines 
the on-site energies within each non-random segment [11]. Us-
ing an analytical procedure, it was demonstrated that this model 
displays a set of extended states, the number of which strongly 
depends on the length of the diluting segments and the symmetry 
of the function generating it. In Ref. [14] the electronic dynamics 
in diluted random chains was investigated in detail. The authors 
demonstrated that the wave function spreading profile strongly de-
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pends upon the initial position of the particle. Hilke [15] further 
investigated the diluted Anderson model in a square lattice, where 
a true metal-insulator transition with mobility edges delimiting a 
band of extended states was found.

Recently, correlated disorder has also been addressed in the 
context of quantum communication protocols. As it promotes the 
breakdown of Anderson localization, the coexistence between lo-
calized and extended states allows for the realization of quantum-
state transfer (QST) [17] and entanglement distribution protocols 
[18] even in the presence of disorder. In reality, one should always 
expect the presence of some amount of disorder in pre-engineered 
quantum chains for QST protocols [17–26] due to experimental 
imperfections in the manufacturing process or dynamical factors. 
With this in mind, it is crucial to investigate the effects corre-
lated noise on those protocols [17–20]. Such correlations offer the 
possibility of masking disorder without the need of substantial re-
sources that would be required in order to globally diminishing it.

Here, we study a class of Rabi-type QST protocol where both 
ends of the chain are weakly coupled to the bulk [27–30], this 
featuring diluted disorder. By means of numerical diagonalization 
of the full Hamiltonian of the system we evaluate the QST input-
averaged fidelity [31] as well as the end-to-end entanglement over 
a fixed time window. Our calculations reveal an interesting depen-
dence of those quantities upon the resonances that exist within 
the channel due to the diluted disorder. We discuss those results 
in light of the existence of extended states in the set of normal 
modes of the channel.

2. Model

We consider a 1D spin chain (X X type) with N + 2 sites de-
scribed by the following Hamiltonian (h̄ = 1)
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Fig. 1. (a) Model scheme: both outer spins, the communicating parties, are weakly 
coupled to the channel, that is g � J , which is made by independent segments 
of one disordered site (dark circles) having its energy randomly picked out of the 
box distribution [−0.5 J , 0.5 J ] plus two clean ones featuring fixed energy ε0. The 
intrachannel coupling J is set uniformly across the channel. (b) Effective end-to-
end interaction derived from second-order perturbation theory. Both outer parties 
acquire renormalized local energies hS and hR and create their own subspace, be-
coming connected via Jeff that depends on the spectral resolution of the channel. 
The working mechanism of the protocol is to make use of such reduced two-site 
configuration to induce Rabi-like oscillations between the outer spins.

H = W (|1〉〈1| + |N + 2〉〈N + 2|)

+
N+1∑
j=2

ε j| j〉〈 j| + J
N∑

j=2

| j〉〈 j + 1|

+g (|1〉〈2| + |N + 1〉〈N + 2|) + H.c., (1)

with the first and last sites denoting the source and receiver com-
ponents, respectively, having local energy ε1 = εN+2 = W and cou-
pled to the channel (made up by sites 2 through N + 1) both 
at rate g . Here, state |i〉 ≡ | ↓〉1| ↓〉2 · · · | ↑〉i · · · | ↓〉N+2 denotes a 
single spin up at the i−th site. We set the hopping strengths 
in the channel as the energy unit, i.e., J ≡ 1. The diluted ran-
dom on-site energies ε j in the channel is generated in the fol-
lowing manner. For j = 2, 5, 8, 11, . . ., ε j are random numbers 
taken uniformly from the interval [−0.5 J , 0.5 J ] whereas for j =
3, 4, 6, 7, 9, 10, 12, 13, . . . we have a pure sub-lattice with energies 
given by ε j = ε0. According to this construction rule, one out of 
each three sites has a random local energy [see Fig. 1(a)]. In or-
der to maintain the periodicity of these segments, which is the 
very ingredient responsible for inducing a set of delocalized states 
within the spectrum [11,13], here we fix the number of sites of 
the channel, N , to be a multiple of three. We also restrict ourselves 
to the weak coupling regime g � J . In this configuration, QST is 
performed via Rabi-like oscillations due to an effective interaction 
between the outer ends of the chain [27,28,30].

3. Quantum-state transfer protocol

In order to transmit an arbitrary qubit state |φ〉 = a| ↑〉 + b| ↓〉
using the natural dynamics of the Hamiltonian defined above, we 
follow the standard QST scheme put forward by Bose in Ref. [31]. 
When initializing the channel and receiver at their ground state, 
the full initial state reads |ψ(0)〉 = |φ〉1| ↓〉2 · · · | ↓〉N+2. Given that 
the underlying Hamiltonian of the system preserves the number 
of excitations, the actual dynamics here takes place in the single-
excitation manifold and can thus be generated by a Hamiltonian 
having the form of Eq. (1). We then let the system evolve through 
e−iHt until state |φ〉 is available at site N + 2 with highest possi-
ble fidelity Fφ(τ ) = 〈φ|ρN+2|φ〉 – at some (prescribed) time τ – 
where ρN+2 is the reduced state of the system after tracing out 
sites 1 through N + 1. An appropriate figure of merit for the trans-
fer is obtained by averaging Fφ over every possible input (that is 
over the Bloch sphere) to obtain [31]

F (t) = 1 + | f N+2(t)| cosϕ + | f N+2(t)|2 (2)

2 3 6
where f N+2(t) = 〈N + 2|e−iHt |1〉 represent the end-to-end transi-
tion amplitude and ϕ is its phase which can be generally neglected 
(we set cosϕ = 1 henceforth) by a suitable choice of the external 
potentials after the protocol is done.

We can work out that transition amplitude in the weak-
coupling regime g � J using second-order perturbation theory for 
Hamiltonian (1) [28]. Given |λk〉 = ∑N+1

j=2 vk, j | j〉 and λk are, respec-
tively, the eigenstates and eigenvalues of the channel Hamiltonian 
Hch ≡ ∑N+1

j=2 ε j | j〉〈 j| + J (
∑N

j=2 | j〉〈 j + 1| + H.c.), we may rewrite 
Eq. (1) as

H = W (|1〉〈1| + |N + 2〉〈N + 2|) +
∑

k

λk|λk〉〈λk|

+g
∑

k

(
vk,2|1〉〈λk| + vk,N+1|N + 2〉〈λk| + H.c.

)
. (3)

This picture tells us that deep in the limit g � J the outer spins, 
each with on-site energy W , either get in narrow resonance with 
one or the channel modes, say W = λk′ , or does not. The former 
situation leads to an effective three-level system whereas the lat-
ter, off-resonant case, promotes the appearance of a reduced two-
level subspace [28] spanned by both communicating parties, which 
is the most likely outcome given we are dealing with a disordered 
channel (the energy spectrum fluctuates sample by sample). So, 
whenever W 
= λk for all k we are able to derive the following 
two-site effective Hamiltonian [see Fig. 1(b)]

Heff = hS |1〉〈1| + hR |N + 2〉〈N + 2| + Jeff(|1〉〈N + 2| + H.c.)

(4)

with

hS = W − g2
∑

k

|vk,2|2
λk − W

, (5)

hR = W − g2
∑

k

|vk,N+1|2
λk − W

, (6)

Jeff = −g2
∑

k

vk,2 v∗
k,N+1

λk − W
. (7)

Details on how to approach to these expressions can be seen in 
Ref. [28]. In principle, the above effective framework does not 
make any assumptions toward the topology of the channel; it 
could be any arbitrary network, disordered or not. Without going 
any further, it is immediate to see that the quality of the single-
particle transfer from site 1 to N +2 (or backwards) should depend 
on the detuning 	 = hS − hR . Indeed, after diagonalization of the 
effective Hamiltonian [Eq. (4)] we get

|ξ±〉 = 2 Jeff|1〉 + (	 ± �)|N + 2〉√
(	 ± �)2 + 4 J 2

eff

, (8)

where � =
√

	2 + 4 J 2
eff is the effective Rabi frequency. The corre-

sponding energies read ξ± = (hS + hR ± �)/2. The absolute value 
of the transition amplitude finally takes the form

| f N+2(t)| =
∣∣∣∣2 Jeff

�
sin

(
�

2
t

)∣∣∣∣ . (9)

Thereby, we see that in order to get maximum fidelity [see 
Eq. (2)], one needs 	 = 0, yielding � = 2 Jeff and then | f N+2(t)| =
1 at times τ = nπ/2| Jeff| (n = 1, 3, 5, . . .). This is readily met when 
the channel is mirror symmetric, meaning that |vk,2| = |vk,N+1|
for every k or when the spectrum features particle-hole symmetry 
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– such as that of a chain with even number of sites with arbi-
trary couplings J i and uniform on-site energies [30] – for which 
λk = −λ−k and |vk, j | = |v−k, j |, trivially leading to hS = hR = 0 as 
long as W is tuned at the very center of the band. (Note that mir-
ror symmetry naturally implies particle-hole symmetry.)

Here, as we have to deal with on-site disorder, 	 
= 0 thereby 
decreasing the QST quality due to asymmetries within the channel 
band. On the other hand, we may minimize such effects by find-
ing proper delocalizedlike states somewhere in the spectrum and 
tuning W accordingly (note that the contribution to the sums in 
Eqs. (5)-(7) decays as (λk − W )−1 and thus modes distant from 

Fig. 2. Normalized probability distribution P (Fmax) versus Fmax = max{F (t)} eval-
uated over the time interval t J ∈ [0, 5 × 105]. Data were obtained from numerical 
diagonalization of Hamiltonian (1) for N = 51, g = 0.01 J , ε0 = 1 J , and 104 distinct 
disorder realizations.
W becomes less relevant), so as to balance the overlaps |vk,2| and 
|vk,N+1| as much as possible and thus |	/ Jeff| � 1 to get � ≈ 2 Jeff
[see Eqs. (2) and (9)]. Of course, that would be useless in the case 
of uncorrelated disorder, where every eigenstate is localized in 1D 
and 2D. Our goal here is then to track down sets of delocalized 
states induced in the diluted disorder model by controlling the 
sender-receiver energy W in order to maximize the QST fidelity.

We also mention that although disorder will make it somewhat 
difficult to define the exact transfer time τ realization by real-
ization [17], here we are ultimately looking after the prospect of 
generating an end-to-end Rabi-like dynamics through a disordered 
chain having the characteristics discussed in the previous section. 
It also deserves to notice the fact that the effective Hamiltonian 
in Eq. (4) is an approximation. When considering the full system 
[Eq. (1)] we expect some leakage from the {|1〉, |N + 2〉} subspace 
into the channel during the evolution [27], given H 
= Heff ⊕ Hch.

4. Results

We start by showing our results for the maximum achieved fi-
delity Fmax = max{F (t)} over a fixed time interval t J ∈ [0, 5 × 105]
for many distinct disordered samples (Fig. 2). Calculations were 
done through exact numerical diagonalization of the full Hamilto-
nian [Eq. (1)]. In each histogram of Fig. 2 we considered different 
sender/receiver local frequencies W . We readily note that the fi-
delity is very sensitive against it. For W = 0 and 2 J , the majority 
of the samples fell around Fmax ≈ 1 whereas W = −1 J resulted in 
a well spread distribution. The frequency W = 1.6 J had the poor-
est transfer quality (Fmax ≈ 1/2).

In order learn more about this dependence of the fidelity over 
W , in Fig. 3 we show Fmax averaged over distinct realizations 
within the same time interval as before, now for two different 
channel sizes. First, we note that there are two windows of W for 
which the transfer quality approaches unit and is weakly sensitive 
Fig. 3. Maximum fidelity Fmax versus W (evaluated within t J ∈ [0, 5 × 105]) averaged over 103 independent realizations of disorder for N = 51, 102 and ε0 = 0.5 J , 1 J . Data 
were obtained from the exact numerical diagonalization of the Hamiltonian (1) with g = 0.1 J (solid lines) and 0.01 J (dashed lines).
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Fig. 4. Participation number χ versus channel eigenenergy λk for N = 7200 sites 
and ε0 = 1 J averaged over 103 disorder realizations. Note that the participation 
number becomes of the order of the chain size at energies 0 and 2 J , signaling the 
delocalized resonant states. Within the first band, χ reaches a maximum of the 
order of a few dozens of sites.

to the chain size. Moreover, we observe a third (less pronounced) 
window with high-fidelity centered at negative energies. This is 
not, however, a robust QST window for it is clearly associated 
to a finite-size effect, being visibly degraded for larger N . These 
aspects can be explained by analyzing the nature of the normal 
modes of the channel. Based on Ref. [13], chains with diluted dis-
order similar to the one we are using here feature two resonances 
within the band of allowed states. These resonances correspond to 
Bloch states with vanishing amplitude at the disordered sites. The 
Bloch states have eigenenergies given by Ek = ε0 − 2 J cos k, with 
k = 2π/ζ and ζ being the associated wavelength. In the present 
case, the resonant ones are ζ = 6 and ζ = 3 and thus for, say 
ε0 = 1 J , the resonant energies are 0 and 2 J , around which it oc-
curs the highest QST fidelity outcomes. In Ref. [13] it was further 
demonstrated that the Lyapunov exponent is finite for all ener-
gies except at those two values. We mention that although we are 
enforcing some sort of periodicity throughout the channel – for 
which the above properties hold – by only considering indepen-
dent segments made up by a disordered site followed by two clean 
ones (see Fig. 1(a)), if we break it down at the end of the channel, 
say, by considering N = 52 or N = 53, the overall behavior would 
be about the same given we are dealing with small chains.

It is important to highlight that there is a finite region in the 
vicinity of the resonant energies in which the localization length 
is extremely pronounced (but finite). This is illustrated in Fig. 4
on which we plot the participation number, given by χ(λk) =
(
∑

j |vk, j|4)−1, versus energy averaged over many disorder realiza-
tions for a chain with N = 7200 sites. Notice that the participation 
number remains quite large for energies above the resonances, 
thus supporting an efficient QST in the finite energy bands re-
ported in Fig. 3. It also explains the loss of QST efficiency in the 
first band. When the chain size exceeds a few dozens of sites, 
it becomes much larger than the localization length in this low-
energy band. Therefore, within the context of QST along a finite 
channel, only modes with large localization length contribute to 
the high fidelity of the transmission, effectively diminishing the 
ratio |	/ Jeff| [see Eqs. (5) through (7)].

Back to Fig. 3, we also note that increasing N will lead to a 
fidelity decrease over the entire range of W . This is due to the 
allocation of more channel modes closer to W thereby disturbing 
the reduced subspace {|1〉, |N + 2〉}. This can be solved by further 
lowering g at the expense of increasing the QST timescale given 
τ ∼ g−2 [28,30].
Last, we investigate the creation of pairwise entanglement that 
occurs during the dynamics of the single-particle transfer from one 
end to the other. If one prepares |ψ(0)〉 = |1〉, and arrange for 	 =
hS − hR = 0 in the effective model [Hamiltonian (4)], for instance, 
we get a fully entangled state of the form

|ψ(t′)〉 = |1〉 + eiϕ |N + 2〉√
2

=
(

| ↑〉1| ↓〉N+2 + eiϕ | ↓〉1| ↑〉N+2√
2

)
⊗ | ↓〉channel (10)

at times t′ = τ/2.
We formally quantify the end-to-end entanglement by means 

of the so-called concurrence [32] which in our case (single-particle 
manifold) is simply [18]

C(t) = 2| f1(t) f ∗
N+2(t)| =

√
| f N+2(t)|2 − | f N+2(t)|4. (11)

Therefore, in the limit g � J for which the effective Hamilto-
nian [Eq. (4)] is valid and the transition amplitude can be ex-
pressed as in Eq. (9), the concurrence reaches its maximum value 
C = 1 whenever the occupation probability of the particle to be 
in site N + 2 is pN+2 ≡ | f N+2(t)|2 = 1/2. By examining Eq. (9)

and recalling that � =
√

	2 + 4 J 2
eff, when |	/ Jeff| < 2 meaning 

p(max)
N+2 > 1/2, the concurrence will always have two local maxi-

mum surrounding the pN+2 peak. When |	/ Jeff| ≥ 2 (p(max)
N+2 ≤

1/2), then both quantities reach about their maximum at the same 
time although the transmission (that is the fidelity) is already in-
significant. On the other hand, entanglement remains strong up to 
|	/ Jeff| = 2, above which the maximum concurrence starts to de-
crease from C = 1.

Getting back to the full Hamiltonian [Eq. (1)] featuring small, 
but finite g , we now evaluate in the maximum concurrence Cmax =
max{C(t)} achieved over the same time interval as in Fig. 3 and 
plot it against W in Fig. 5. As we expect from the discussion 
carried out above, the concurrence is indeed much more reliable 
against disorder (compare it with Fig. 3). It is worth stressing that 
in Fig. 5 we have considered the same parameters as in Fig. 3 when 
investigating the maximum fidelity. Needless to say, the resonance 
properties of the channel discussed at the beginning of this section 
applies here as well.

5. Summary and conclusions

In summary, we investigated QST and entanglement generation 
protocols over a 1D chain with weak end couplings featuring a 
particular kind of noise named diluted disorder, where the random 
on-site energies are set following a given periodicity. We showed 
that the existence of special resonances within the energy band 
of the channel allows for a high-quality realization of the above 
quantum information tasks even in the presence of disorder.

The overall performance of the channel primarily depends upon 
inducing an effective, reduced interaction between the outer ends 
of the chain (setting g � J ) and making sure that there is a 
proper set of delocalized states around the tuning frequency W , 
that ultimately yields |	/ Jeff| � 1 for the QST protocol or, at least 
|	/ Jeff| ≤ 2 for the entanglement generation procedure. In such 
diluted disorder model, the fidelity of the protocols is enhanced 
whenever W matches Bloch-like resonant modes with vanishing 
amplitude at the disordered sites. It is important to stress that the 
location of those resonant modes can be tuned by properly tailor-
ing the energy profile in the non-random segments, thus opening 
the possibility of carrying out efficient quantum communication 
schemes for any specific frequency associated with the sender and 
receiver sites.
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Fig. 5. Maximum concurrence Cmax versus W (evaluated within t J ∈ [0, 5 × 105]) averaged over 103 independent realizations of disorder for N = 51, 102 and ε0 = 0.5 J , 1 J . 
Data were obtained from exact numerical diagonalization of the Hamiltonian (1) with g = 0.1 J (solid lines) and 0.01 J (dashed lines).
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