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Abstract

We study an entanglement transfer protocol in a two-leg ladder spin-1/2 chain in the presence of disorder. In the
scenario where the on-site energies and intrachain couplings are correlated, following approximately constant propor-
tions along the chain, we set up a scheme for high-fidelity state transfer via a particular subspace wherein effective
fluctuations in the parameters ultimately depend on the degree of such correlations, rather on the disorder featured
by each leg individually, accounted by a box distribution of strength W. Moreover, we find that the leakage of in-
formation out of that subspace is suppressed upon increasing W and thus the transfer fidelity, evaluated through the
entanglement concurrence at the other end of the ladder, also builds up with W.
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1. Introduction

In the past decade, 1D spin chains have been regarded
as potential quantum communication platforms for a
wide variety of tasks (see [1, 2] and references within).
In standard quantum-state transfer protocols [3], for in-
stance, the chain must be manufactured in such a way an
arbitrary qubit can be faithfully sent from one point to
another at some (preferably small) prescribed time fol-
lowing the natural underlying Hamiltonian dynamics of
the system.

To do so, a handful of schemes have been put forward
since the original proposal in Ref. [3], some relying
on fully-engineered couplings [4–6] — thereby yielding
perfect transfer through arbitrary distances —, dual-rail
encoding [7], strong local magnetic fields [8, 9], and
weak end couplings [10–14] to name a few.

Given the possibility of experimental errors in the
manufacturing process of the chain and that one is will-
ing not to interfere with the channel while it is oper-
ating in order to avoid decoherence and losses, disor-
der stands out as a major threat to the performance of
the protocol. This has motivated several studies on the
influence of static fluctuations in the parameters of the
chain over the state transfer fidelity [7, 15–30].
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It is pretty well established that 1D and 2D single-
particle hopping models display Anderson localization
for any degree of uncorrelated disorder [31, 32]. A
very rich cross-over between localization and delocal-
ization, though, can be found in chains displaying cer-
tain kinds of correlated disorder [33–38]. For instance,
it was shown in [35] that long-range correlated disor-
der induces the appearance of a band of extended states
with sharp mobility edges thereby indicating a metal-
insulator transition. Very recently, we have explored
the breakdown of Anderson localization in the context
of quantum-state transfer protocols [28–30, 39, 40] and
also in a discrete-time quantum walk [41].

Another kind of configuration that deserves attention
is quasi-1D models such as ladder networks. In [42],
it was reported that a two-leg Aubry-André model dis-
plays a metal-insulator transition with multiple mobility
edges. They also put forward the possibility of span-
ning a band of localization-free states coexisting with
exponentially-localized modes given the on-site ener-
gies and interchain hopping strenghts follow constant
proportions along the ladder [43]. de Moura et al. fur-
ther found out a novel level-spacing statistics associated
to it [44]. A generalized version of this wavefunction
delocalization engineering for N-leg ladder systems was
addressed in [45]. The interplay between channels fea-
turing different degrees and/or types of disorder was in-
vestigated in Refs. [46, 47].

Two-leg chains have been very important frameworks
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for the study of ubiquitous transport properties of DNA
molecules [48]. It also deserves notice the fact that
some polariton systems — i.e., those involving hybrid
light-matter particles, where each component may natu-
rally endure different disorder levels — can be mapped
directly onto a single-particle hopping in two coupled
chains [49]. Recently, ladder chains have also been ex-
plored in the presence of gain and loss, namely in a local
PT -symmetric configuration [50].

In this work we bring about the idea of localization-
free subspaces spanning over a strongly disordered me-
dia with correlated parameters [43, 45] into the context
of quantum communication protocols. In particular, we
aim to transmit entanglement with high fidelity from
one end of a two-leg ladder chain to the other in the pres-
ence of disorder. We outline the parameter conditions
for which a localization-free channel arises and how to
properly encode the initial entangled state in order to
send it through. We further consider imperfections in
this channel, what leads to localization and leakage of
information into the other (much more disordered) sub-
space. Our main result is that this effect can be avoided
when, surprisingly, we increase the amount of disorder
originally present in the system, while still maintain-
ing the aforementioned correlations. This sort of infor-
mation backflow induced by Anderson-localization has
been addressed in Ref. [51] for a single qubit coupled
to a disordered network and so it is paramount to in-
vestigate it in the context of quantum communication
protocols in engineered qubit chains.

In the following, Sec. 2 we introduce the Hamiltonian
model and in Sec. 3 we discuss the conditions for set-
ting up the state transfer channel. In Sec. 4 we display
our results for the entanglement transfer performance
against disorder and investigate the leakage of informa-
tion out of the channel. Our conclusions are drawn in
Sec. 5.

2. Model and formalism

Here, we deal with a two-leg ladder spin−1/2 (qubit)
chain of the XX type, with N sites each, described by
a Hamiltonian of the form H = H(1) + H(2) + HI , with
(~ = 1)

H( j) =

N∑
n=1

εn, jσ
+
n, jσ

−
n, j +

N−1∑
n=1

Jn, j(σ+
n+1, jσ

−
n, j + H.c.),

(1)

HI =

N∑
n=1

γn(σ+
n,2σ

−
n,1 + H.c.), (2)

where σ+
n, j (σ−n, j) raises (lowers) the spin at the n-th site

of the j-th chain ( j = 1, 2), εn, j stands for the local
magnetic field, Jn, j is the intrachain exchange param-
eter, and γn is the interchain one. (Note that σ+

n, jσ
−
n, j

differs from σz
n, j by a constant.) We assume Jn, j, γn < 0

and Jn,1 = Jn,2 ≡ Jn. Furthermore, we need some
coupling scheme to guarantee high fidelity excitation
transfer from one end of the chain to the other. Here,
in particular, we choose the class of fully-engineered
couplings used in perfect state transfer protocols [4],
Jn = J

√
n(N − n)/(N/2), with n = 1, 2, . . . ,N − 1. Note

that the denominator N/2 (for even N) has been added
so that max{Jn} = J ≡ 1 is the energy unit. This scheme
induces a linear dispersion relation thereby allowing for
transmission of a qubit with maximum fidelity (in an or-
dered system) in 1D chains with arbitrary size [4]. Ex-
perimental realizations of this configuration have been
put forward in Refs. [52, 53].

Note that H conserves the total number of excitations
and here we are interested in the single-excitation man-
ifold spanned over the ferromagnetic state, that is

|n〉( j) = σ+
n, j

2⊗
i=1

|00 · · · 0〉(i), (3)

thereby forming a 2N-dimensional Hilbert space [see
Fig. 1(a)].

Let us now consider that the on-site potentials εn, j and
the inter-chain coupling rates γn are disordered. In par-
ticular, let us initially assume they fall within a uniform
random distribution in the interval [−W,W], W being the
intensity of disorder.

3. Correlated disorder and localization-free sub-
space

In [43] (see also [44]) it was shown that when εn,1,
εn,2, and γn obey constant proportions between each
other across the chain — say, εn,2/εn,1 = α and γn/εn,1 =

β for all n —, one may perform a local change of basis
that decouples the Hamiltonian into two parts. More-
over, it is possible to turn one of these subsystems com-
pletely free of fluctuations [43] by setting β2 = α. To
see this happening, let us define

|n,±〉 =
|n〉(1) ± |n〉(2)

√
2

, (4)
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and rewrite Hamiltonian H in terms of these states, to
get

H =
∑
µ=±

 N∑
n=1

ε̃n,µ|n, µ〉〈n, µ|

+

N−1∑
n=1

Jn(|n + 1, µ〉〈n, µ| + H.c.)


+

N∑
n=1

γ̃n(|n,+〉〈n,−| + H.c.), (5)

with

ε̃n,± =
εn,1 + εn,2

2
± γn, (6)

γ̃n =
εn,1 − εn,2

2
, (7)

being the potentials and inter-chain coupling rates, re-
spectively, for the effective ladder with both legs extend-
ing over |n,+〉 and |n,−〉 [see Fig. 1(b)].

By looking at Hamiltonian (5), we readily note that
setting εn,1 = εn,2 leads to the decoupling of both legs
as γ̃n = 0. In addition, when εn,1 = γn then the anti-
symmetric branch takes ε̃n,− = 0. (Note that those stand
for the case α = β = 1.) The availability of a ordered
subspace embedded in a strongly disordered media is
very appealing when it comes to running pre-engineered
quantum-state transfer protocols. It means that if we
have an imperfect (single-leg) chain due to, say, uncor-
related on-site fluctuations, generating another copy of
it and coupling them up would lead to a localization-
free quantum communication channel as long as the in-
put qubit is properly encoded [e.g. following Eq. (4)],
no matter how strong W is.

Now, it is immediate to realize that this second
(backup) will not be a perfect copy of the original one,
what would retain some degree of disorder in the chan-
nel and also promote the leakage of information from
|n,−〉 into |n,+〉 as εn,1 , εn,2 and so γ̃n , 0 for all
n. Still, even if we allow for small deviations in εn,2
around εn,1, it is possible to keep the channel reasonably
safe. For instance, let εn,2 = εn,1 + δn, with δn being
another random number, uniformly distributed within
[−∆,∆] such that ∆ � W. By looking at Eqs. (6) and
(7), we now have γ̃n = −δn/2 and ε̃n,− = δn/2. There-
fore, the effective disorder in the leg spanned by {|n,−〉}
is solely weighted by ∆ and not by W, so that the latter
can be made arbitrarily large. Further, as ∆ , 0 there
will be leakage into {|n,+〉}, this subspace now acting
as a strongly disordered “environment” with on-site en-
ergies given by ε̃n,+ = (4εn,1 +δn)/2 [cf. Fig. 1(b)]. Note

(a)

(b)

transmission channel

leakage

Alice's
domain

input

J1 J2

J1 J2

Figure 1: (a) Coupling scheme of the two-leg ladder model described
by Eqs. (1) and (2). The on-site potentials (εn, j with j = 1, 2) and
inter-chain coupling strengths γn follow a box-like disorder distribu-
tion between [−W,W] each. We set intra-chain couplings to follow
Jn = J

√
n(N − n)/(N/2), with n = 1, 2, . . . ,N − 1. Alice is in charge

of the first qubit of each leg and her goal is to prepare an entangled
state using hers and sent it to Bob resising at the other end of the
ladder. (b) We can also express the ladder Hamiltonian in a more
convenient form by changing the basis following Eq. (4). The result-
ing effective ladder is described by Hamilotonian (5), which feature
a localization-free subspace provided εn,1 = εn,2 = γn. If εn,2 devi-
ates a little from εn,1, that is εn,2 = εn,1 + δn, with δn ∈ [−∆,∆] being
another random number, the negative branch (the transmission chan-
nel) features some leftover disorder now depending on ∆ (not on W).
Thus if Alice manages to properly encode her state such that it begins
at the first site of such protected channel, the transfer protocol can
be relatively shielded from the original disorder strength W although
leakage to the positive branch is to take place. Our key result is that
this leakage is suppressed as W is increased.

that we are still considering γn = εn,1. Small deviations
from it would not affect γ̃n, but the on-site potentials ε̃n,+

and ε̃n,−. Therefore, here disorder will be ultimately set
by W and ∆ in the regime ∆/W ≤ 1 with ∆ � J.

4. Results and discussion

4.1. Entanglement transfer

Now, suppose Alice (A) has access to the first cell
of the ladder and is willing to send some amount of
entanglement to Bob, residing at the other end of the
ladder, relying only upon the natural Hamiltonian dy-
namics of the system [3]. In order to make use of the
appropriate (“protected”) transmission subspace as dis-
cussed in the previous section, a bipartite entangled state
of the Bell type can be properly prepared in the form
|φ〉A = (|10〉A − |01〉A)/

√
2. The whole system is then
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Figure 2: Two-qubit concurrence for the last cell of the ladder system,
C(τ), evaluated at time τ = πN/(4J) against disorder strength W/J
(from 0.2 to 10) averaged over 100 distinct realizations. Plots were
obtained from exact numerical diagonalization of Hamiltonian (5) for
N = 30 and ∆/J = 0.05, 0.1, 0.2. The initial state is |ψ(0)〉 = |1,−〉.

initialized in |ψ(0)〉 = |φ〉A|0 · · · 0〉(1)|0 · · · 0〉(2) = |1,−〉
[cf. Eqs. (3) and 4], which can be thought as a particu-
lar case of the dual-rail encoding scheme [7].

We are now to quantify the amount of entangled to
reach Bob’s cell through unitary evolution of Hamil-
tonian (5), U(t) = e−iHt. For this, we resort to the
so-called concurrence [54] which accounts for the en-
tanglement shared between two qubits in any arbitrary
mixed state. For single-particle states, all the input we
need is the wave function amplitude of both qubits of
interest, namely C(t) = 2| f (1)

N (t) f (2)
N (t)|, where f ( j)

N =

〈N( j)|ψ(t)〉 is the transition amplitude to the last site of
the j-th leg. For a separable (fully-entangled) state, this
quantity reads C = 0 (C = 1). Note that the trans-
fer performance will be ruled by the likelihood of hav-
ing |ψ(τ)〉 ≈ |N,−〉 at a given time τ. For the coupling
scheme we are using, the transfer time is τ = πN/(4J)
[4].

Figure 2 shows the disorder-averaged entanglement
concurrence C(t) versus disorder strength W/J evalu-
ated at t = τ for the encoded initial state |ψ(0)〉 =

|1,−〉. There we readily spot a very interesting behav-
ior, namely that the entanglement transfer performance
actually gets better upon increasing W. At this point it
is convenient to recall that if ∆ = 0 then the dynam-
ics takes place on a localization-free subspace, namely
an effective ordered 1D chain (see beginning of Sec.
3). In that case, the concurrence would be maximum,
C(τ) = 1, entailing a perfect state transfer. In Fig. 2
we see that a local detuning in each cell, ∆ , 0, low-
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Figure 3: Two-qubit concurrence for the last cell of the ladder system,
C(τ), evaluated at time τ = πN/(4J) against ratio ∆/W averaged over
200 distinct realizations. Green-shaded area is the standard deviation
of the mean. Plots were obtained from exact numerical diagonaliza-
tion of Hamiltonian (5) for N = 30 and fixed W = 3J. The initial state
is |ψ(0)〉 = |1,−〉.

ers the transfer performance. This happens because an
effective internal disorder has been induced in branch
{|n,−〉} whilst some information is leaking from it into
{|n,+〉}. We also mention that these fluctuations affect
the transfer time τ. On the other hand, upon increasing
W, the concurrence is substantially recovered until satu-
rating. At this regime, the original disorder W no longer
has influence on C(τ). Rather, its saturated (averaged)
value is set upon ∆.

The trend seen in Fig. 2 tells us two things: (1) ∆, as
it defines the effective diagonal disorder strength in the
anti-symmetric branch, also places a limit at the maxi-
mum achievable concurrence; (2) this maximum is only
reached when W/J is large enough (this is because W
prevents leakage of information as will be discussed
in the following section). Hence, the ratio ∆/W turns
out to be the most appropriate measure of disorder here
given the rigorous correlations involved between the pa-
rameters and also due to the fact it accounts for how
similar is one leg to another (∆/W � 1 means they are
quite alike). In Fig. 3 we again evaluate the concurrence
at t = τ but now versus ∆/W, with W = 3J. As ex-
pected, we loose transfer quality as ∆/W increases but
it is possible to keep the entanglement transfer above
90% up to ratios around 6%.

4.2. Leakage dynamics

We now investigate the leakage of information out of
the anti-symmetric branch (transmission channel) and
the influence of disorder strength W in order to explain
the concurrence outcomes seen in Figs. 2 and 3.
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Figure 4: Time evolution of the total occupation probability in the
anti-symmetric branch, P(−)(t) =

∑
n |〈n,−|ψ(t)〉|2 (solid lines), and in

the symmetric one, P(+)(t) = 1 − P(−)(t) (dashed lines), for various
disorder strengths W, averaged over 100 independent samples. Time
is expressed in units of τ = πN/(4J). Plots were obtained from exact
numerical diagonalization of Hamiltonian (5) for N = 30 and ∆/J =

0.2. Again, the initial state is |ψ(0)〉 = |1,−〉.

Before doing so, we shall get some intuition over the
dynamics of disordered ladders by looking at its phys-
ical (original) form [Eqs. (1) and (2)]. For a moment,
suppose the local energy detuning δn = δ and γn = γ for
all n. If we set an initial state as any linear combination
of, say, {|n(1)〉}, the overall occupation probability to re-
main in the first leg reads P(1)(t) = cos2(γt) for δ = 0
(see Appendix A for details). Thereby, the excitation
oscillates back and forth between both legs whereas it
propagates following its own intrachain dynamics. For
δ , 0, P(1)(t) still undergoes periodic oscillations but
with smaller amplitude and faster rate (see Eq. (A.7)
of Appendix A). The simple picture above tells us in
advance that large detunings prevent leakage of infor-
mation from one leg to the other, as we would have ex-
pected intuitively.

Let us now get back to the effective ladder chain de-
scribed by Hamiltonian (5), wherein the local cell de-
tunings and interchain couplings follow a disordered se-
quence along the array. In Figure 4 we show the time
evolution of P(−)(t) =

∑
n |〈n,−|ψ(t)〉|2 for the same lad-

der configuration as in Figs. 2 and 3, with initial state
|ψ(0)〉 = |1,−〉, averaged over many distinct realizations
of disorder. First and foremost, there we clearly see that
the disorder strength W indeed prevents the excitation to
leak from subspace {|n,−〉} into {|n,+〉}. We shall also
mention that the curves look smooth due to the disorder-

averaging procedure. Each realization now displays a
non-periodic oscillatory behavior. For longer times, the
(averaged) total probability reaches about a stationary
value which depends on both ∆ and W.

We shall get the physical picture underneath the be-
havior described above by analyzing the on-site energy
detuning within each cell. When ∆ ∼ W and the system
is initialized in the anti-symmetric branch (transmission
channel), as the excitation spreads out far away from
the initial site it is very likely that it will eventually find
some local resonance — a given cell with low detuning
ε̃n,+ ≈ ε̃n,− — and therefore the excitation is capable of
making through the other leg. Chances are extremely
low for this to happen upon increasing W and thus the
excitation becomes trapped in the original leg for high
enough W � ∆. What is interesting is that leakage is
being prevented while the symmetric (positive) branch
is becoming even more disordered (W can be as strong
as we wish). Then, as far as the transmission subspace
is concerned, what really matters is not the Anderson lo-
calization itself taking over the other subspace, but the
lack interchain resonances induced by W � ∆.

5. Conclusions

We studied an entanglement transfer protocol set over
a disordered two-leg ladder qubit chain. By setting up a
transmission channel upon demanding certain correla-
tions between the parameters of the ladder while still
maintaining the global fluctuations quantified by W,
we analyzed the figure of merit of the protocol in the
case where those correlations are not perfectly met (ac-
counted by ∆), thus leading to an effective disorder in
the channel and promoting the leakage of information
out of it. Thus the effective degree of disorder here is
ultimately measured by our capability of duplicating a
given disordered leg, that is ∆/W as long as ∆ � J.
We showed that the leakage can be suppressed upon
increasing W thereby improving the concurrence out-
comes at the target location to a great extent. We further
explained it by studying the leakage dynamics in detail.

This rather surprising behavior shows us that disorder
may be a convenient ingredient to prevent dissipation.
Indeed, there has been considerable interest in studying
open system dynamics involving structured (such as dis-
ordered) environments [51, 55]. In [51], for instance —
by looking at the dynamics of a single emitter coupled
to an array of cavities acting as the environment — they
reported that disorder is able to push information back
to the emitter. They further characterized this infor-
mation backflow using proper non-Markovianity mea-
sures. Further extensions of our work may be taken
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along this direction. Another possibility is setting up
quantum communication protocols in N-leg ladders for
which there also exists schemes to induce a localization-
free subspace embedded within a strongly-disordered
scenario [45].

Experimental realization of our findings should in-
volve single-site addressing in order to adjust the local
potential of the second (backup) leg — with the high-
est possible accuracy so as to assure ∆ � W — once
the first one is characterized. A potential platform for
this could be optical lattices, for which a high degree of
single-site resolution has been achieved over the past
few years [56–58]. In these systems, the disordered
potential can be controlled by an optical speckle field
[59, 60]. Anderson localization was also observed in a
2D photonic lattice [61].

The perfect quantum-state transfer scheme [4] has
been implemented in an array of 11 coupled waveguides
[53]. Technology for fabricating more structured, pro-
grammable waveguide lattices is now at reach. In [62],
a twodimensional continuous-time quantum walk with
single photons has very recentely been realized on a
49×49 grid. This is a considerable step towards the im-
plementation of engineered Hamiltonians with tunable
parameters and nontrivial topologies.
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Appendix A. One-leg occupation probability

Here we show how to obtain the overall occupation
probability over time in one of the legs of the physical
ladder chain [Eq. (A.7)] given δn = δ and γn = γ for all
n [cf. Eqs. (1) and (2)].

Let us denote

|λk, j〉 =
∑

n

v( j)
k,n|n〉

( j), (A.1)

such that it satisfies the eigenvalue equation H( j)|λk, j〉 =

λk, j|λk, j〉, with k = 1, . . . ,N. Now, given Jn,1 = Jn,2,
both sets of eigenstates ( j = 1, 2) feature the same spa-
tial profile. Also note that λk,2 = λk,1 + δ. The interac-
tion Hamiltonian [Eq. (2)] yields HI |λk,1(2)〉 = γ|λk,2(1)〉.
Thereby we end up with a series of independent dimer-
like interactions between the normal modes of each leg.

The total Hamiltonian of the system may then be rewrit-
ten as H =

∑
k Hk, with

Hk = λk,1|λk,1〉〈λk,1| + λk,2|λk,2〉〈λk,2|

+ γ(|λk,1〉〈λk,2| + H.c.). (A.2)

Each dimer can be diagonalized separately and we get

|ψ±k 〉 = A±|λk,1〉 + B±|λk,2〉, (A.3)

with

A± =
2γ√

(δ ±Ω)2 + 4γ2
, B± =

δ ±Ω√
(δ ±Ω)2 + 4γ2

,

(A.4)
and corresponding eigenenergies

E±k =
1
2

(λk,1 + λk,2 ±Ω) = λk,1 +
1
2

(δ ±Ω), (A.5)

where Ω =
√
δ2 + 4γ2 is the effective Rabi frequency.

Now, if we initialize the system as a linear combi-
nation of the form |ψ(0)〉 =

∑
k ak(0)|λk,1〉, the time-

evolved state reads

|ψ(t)〉 = U(t)|ψ(0)〉 =
∑

k,ν=±

e−iEν
k t |ψνk〉〈ψ

ν
k |ψ(0)〉

=
∑
ν=±

(Aν)2e−i( δ+νΩ
2 )t

∑
k

ak(t)|λk,1〉

+
∑
ν=±

AνBνe−i( δ+νΩ
2 )t

∑
k

ak(t)|λk,2〉, (A.6)

where ak(t) = ak(0)e−iλ(1)
k t. Therefore, the wavefunc-

tion evolves in time following the intrachain eigenspec-
trum — which, recall, is the same for both legs —
with coefficients ak(t) modulated by the sums in ν (see
equation above). The overall occupation probability
P(1)(t) =

∑
k |〈λk,1|ψ(t)〉|2 can then be worked out as

P(1)(t) = 1 − 2
(
γ

Ω

)2
[1 − cos(Ωt)] , (A.7)

which reduces to P(1)(t) = cos2(γt) when δ = 0. Like-
wise, P(2) = 1 − P(1) for the other leg.
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