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We study quantum-state transfer in X X spin-1/2 chains where both communicating spins are weakly 
coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-
range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the 
channel is able to perform almost perfect quantum-state transmissions even in the presence of significant 
amounts of disorder provided the degree of those correlations is strong enough, with the cost of having 
long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in 
the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest
that coexistence between localized and delocalized states can diminish effects of static perturbations in 
solid-state devices for quantum communication.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Spin chains have been widely addressed as quantum channels 
for (especially short-distance) communication protocols since pro-
posed in Ref. [1] that spin chains can be used for carrying out 
transfer of quantum information with minimal control, i.e., with no 
manipulation being required during the transmission process. Basi-
cally, Alice prepares and sends out an arbitrary qubit state through 
the channel and Bob only needs to make a measurement at some 
prescribed time. The evolution itself is given by the natural dy-
namics of the system.

Since then, several schemes for high-fidelity quantum-state 
transfer (QST) [1–19] and entanglement creation and distribution 
[20–33] in spin chains have been put forward (for reviews on 
the subject, see Refs. [34–36]). Perfect QST can be attained in 
fully modulated networks [2–4,37] (cf. [38,39] for proof-of-concept 
realizations). Other less-demanding (on the engineering side) ap-
proaches rely on optimization of the outer couplings of the chain 
[13] or setting very weak couplings between the communicating 
parties and the bulk of the chain [6–9,11,19,27–29] Similarly, one 
can also strategically apply local strong magnetic fields in order to 
establish resonances between the sender and receiver [16,17,23].

One factor that should be taken into account when dealing with 
the above protocols is disorder arising from, e.g. manufacturing er-
rors, that could potentially damage the planned output [29,40–50]. 
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It is known that the slightest amount of disorder is already capable 
of promoting Anderson localization effects [51] in 1D systems. That 
is not necessarily true, however, in the case of correlated disorder. 
The breakdown of Anderson localization has been reported when 
short- [52,53] or long-range correlations [33,54–60] are present in 
disordered 1D models. In particular, the latter case finds a set of 
extended states in the middle of the band with well detached mo-
bility edges thereby signalling an Anderson-type metal-insulator 
transition [54,55]. This is also manifested in low-dimensional spin 
chains [33,57]. Long-range correlations with power-law spectrum 
can actually be found in various physical systems such as in, to 
name a few, DNA molecules [61], plasma fluctuations [62], pat-
terns in surface growth [63], and graphene nanoribbons [64]. Other 
kinds of correlated defects have been considered in [40,42] in the 
context of QST.

Here, we consider a one-dimensional X X spin chain in which 
the local magnetic fields (on-site potentials) of the channel fol-
low a long-range correlated disordered distribution with power-
law spectrum S(k) ∝ 1/kα , with k being the corresponding wave 
number and α being a characteristic exponent governing the de-
gree of such correlations. We show that when perturbatively at-
taching two communicating (end) spins to the channel and setting 
their frequency to lie in the middle of the band, we are still able 
to perform nearly perfect QST rounds in the presence of corre-
lated disorder, the major drawback being the requirement of long 
transfer times and loss of accuracy in the measurement time. Sur-
prisingly, we find it happens even in the presence of considerable 
amounts of asymmetries in the channel. The reason for that is the 
appearance of extended states in the middle of the band which 
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offers the necessary end-to-end effective symmetry thereby sup-
porting the occurrence of Rabi-like oscillations between the sender 
and receiver spins. We further show that perfect mirror symmetry 
is not a crucial factor as long as there exists a proper set of delo-
calized eigenstates in the channel.

In the following, Sec. 2, we introduce the X X spin Hamiltonian 
with on-site long-range correlated disorder. In Sec. 3 we derive 
an effective two-site Hamiltonian that accounts for the way both 
communicating parties are coupled to the channel. In Sec. 4 we 
display the results for the QST fidelity and timing errors. Our final 
remarks are addressed in Sec. 5.

2. Spin-chain Hamiltonian

We consider a pair of spins (communicating parties) coupled 
to a one-dimensional quantum channel consisting altogether of 
spin-1/2 chain with open boundaries featuring X X-type exchange 
interactions described by Hamiltonian Ĥ = Ĥch + Ĥ int with (h̄ = 1)

Ĥch =
N∑

i=1

ωi

2
(1̂ − σ̂ z

i ) −
∑
〈i, j〉

J i, j

2
(σ̂ x

i σ̂ x
j + σ̂

y
i σ̂

y
j ), (1)

where σ̂ x,y,z
i are the Pauli operators for the i-th spin, ωi is the 

local (on-site) magnetic field, and J i, j is the exchange coupling 
strength between nearest-neighbor sites. Supposing the sender (s) 
and receiver (r) spins are connected to sites 1 and N from the 
channel at rates gs and gr , respectively, the interaction part reads

Ĥ int = ωs
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Note that since Ĥ conserves the total magnetization of the system, 
i.e., 

[
Ĥ,

∑
i σ̂

z
i

]
= 0, the Hamiltonian can be split into independent 

subspaces with fixed number of excitations. Here we focus on the 
single-excitation Hilbert space spanned by the computational basis 
|i〉 = σ̂+

i | ↓↓ . . . ↓〉 with i = r, s, 1, . . . , N , that means every spin 
pointing down but the one located at the i-th position. In this case, 
we end up with a hopping-like matrix with N + 2 dimensions.

Let us now make a few assumptions in regard to the channel 
described by Hamiltonian (1). Here we consider the spin-exchange 
coupling strengths to be uniform J i, j → J and, in order to study 
the robustness of the channel against disorder we introduce cor-
related static fluctuations on the on-site magnetic field ωn , n =
1, . . . , N . A straightforward way to generate random sequences fea-
turing internal long-range correlations is through the trace of the 
fractional Brownian motion with power-law spectrum S(k) ∝ 1/kα

[54,59]

ωn = J
N/2∑
k=1

k−α/2cos

(
2πnk

N
+ φk

)
, (3)

where k = 1/λ, is the inverse modulation wavelength, {φk} are 
random phases distributed uniformly within [0,2π ], and α con-
trols the degree of correlations. This parameter is related to the 
so-called Hurst exponent [65], H = (α − 1)/2, which characterizes 
the self-similar character of a given sequence. When α = 0, we re-
cover the case of uncorrelated disorder (white noise) and for α > 0
underlying long-range correlations take place. The resulting long-
range correlated sequence becomes nonstationary for α > 1. Fur-
thermore, according to the usual terminology, when α > 2 (α < 2) 
the series increments become persistent (anti-persistent). Interest-
ingly, this brings about serious consequences on the spectrum pro-
file of the system. As shown in [54,59], when α > 2 there occurs 
the appearance of delocalized states in the middle of the one-
particle spectrum band. In the QST scenario with weakly-coupled 
spins r and s, i.e. gs, gr � J , that promotes a strong enhance-
ment in the likelihood of disorder realizations with very-high fi-
delities F , most of them yielding F ≈ 1. This will be elucidated 
along the paper.

Hereafter we set the sequence generated by Eq. (3) to follow a 
normalized distribution, that is ωn → (ωn − 〈ωn〉) /

√
〈ω2

n〉 − 〈ωn〉2. 
We also stress that such a disordered distribution has no typical 
length scale which is a property of many natural stochastic series 
[66].

3. Effective two-site description

We now work out a perturbative approach to write down a 
proper representation of an effective Hamiltonian involving only 
the sender and receiver spins provided they are very weakly cou-
pled to the channel. Intuitively, we expect they span their own 
subspace with renormalized parameters and thus QST takes place 
via effective Rabi oscillations between them [7,19]. Our goal here 
is to investigate the influence of disorder in such subspaces and 
evaluate their resilience to imperfections in the channel.

Following a second-order perturbation approach (for details, see 
Refs. [7,8] or Supplementary Material), we can obtain an effective 
Hamiltonian projected onto {|s〉, |r〉} which reads

Ĥsr =
(

hs − J ′
− J ′ hr

)
, (4)

with

hν = ων − ε2 g2
ν

∑
k

|aνk|2
Ek − ων

, (5)

ν ∈ {s, r}, and

J ′ = ε2 gs gr

2

∑
k

(
askark

Ek − ωs
+ askark

Ek − ωr

)
, (6)

where ε being the perturbation parameter, ask ≡ 〈1|Ek〉, ark ≡
〈N|Ek〉, and {|Ek〉} are the eigenstates of the channel [Eq. (1)] with 
corresponding (nondegenerate) frequencies {Ek}. Note that we are 
assuming all parameters to be real.

Hamiltonian (4) describes a two-level system which performs 
Rabi-like oscillations in a time scale set by the inverse of the gap 
between its normal frequencies. In order to have as perfect as 
possible QST one should guarantee that hs = hr . This is automati-
cally fulfilled, given ωs = ωr and gs = gr = g , for mirror-symmetric 
chains since |ask| = |ark| for every k. In that case, for a noiseless 
uniform channel and in the limit of very weak outer couplings, 
which implies in the validity of Hamiltonian (4), an initial state 
prepared in |s〉 will evolve in time to |r〉 with nearly unit ampli-
tude at times τ = nπ/(2 J ′) = nπ J/(2ε2 g2), with n being an odd 
integer [6,7]. Note that as N increases more eigenstates get in the 
middle of the spectrum and thus εgν must be adjusted accordingly 
(we shall drop out the perturbation parameter ε hereafter).

4. Quantum-state transfer protocol

4.1. General scheme

In the standard QST procedure [1], Alice is able to control 
the spin located at position s and wants to send an arbitrary 
qubit |φ〉s = α| ↓〉s + β| ↑〉s to Bob which has access to spin r. 
Now let us assume that the rest of the chain is initialized in 
the fully polarized spin-down state so that the whole state reads 
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|�(0)〉 = |φ〉s| ↓〉1 . . . | ↓〉N | ↓〉r . She then let the system evolve fol-
lowing its natural dynamics, |ψ(t)〉 = Û(t)|ψ(0)〉, where Û(t) ≡
e−i Ĥt is the unitary time-evolution operator. Ideally, she expects 
that at some prescribed time τ the evolved state takes the form 
|�(τ)〉 = | ↓〉s| ↓〉1 . . . | ↓〉N |φ〉r . At this point, Bob receives state 
ρr(τ ) = Trs,1,...,N |�(τ)〉〈�(τ)| and thus the transfer fidelity can be 
evaluated by Fφ(τ ) = 〈φ|ρr(τ )|φ〉. Note, however, that this mea-
sures the performance of QST for a specific input. In order to 
properly evaluate the efficiency of the channel, we may average 
the above quantity over all input states |φ〉s (that is, over the Bloch 
sphere) which results in [1]

F (t) = 1

2
+ fr(t)

3
+ fr(t)2

6
(7)

for an arbitrary time with f i(t) ≡ |〈i|e−i Ĥt |s〉|. Therefore, we note 
that such a state-independent figure of merit of QST depends 
solely upon the transition amplitude between the sender and re-
ceiver spins with F (t) = 1 only when fr(t) = 1. The problem of 
transmitting a qubit state from one point to another can thus be 
viewed as a single-particle continuous quantum walk [67] on a 
network and the goal is to find out ways to transfer the excita-
tion between two distant sites with the highest possible transition 
amplitude.

4.2. Results

In the case of weakly-coupled spins in which an effective two-
site interaction sets in [cf. Eq. (4)], the transition amplitude fr(t)
will strongly depend upon � ≡ hs − hr . The emergence of long-
range correlations should then favor smaller values of � (see Sup-
plementary Material for a discussion about this).

Now, let us see about the resulting QST performance. As a 
testbed, we consider a N = 50 channel, gν = g = 0.001 J , and 
ων = 0. Given the size of the channel, this chosen value for g as-
sures that the subspace created by states |s〉 and |r〉 becomes safely 
shielded from influence of channel normal modes lying around the 
band center. Even if one of them gets close by, it is very likely that 
the eigenstate will not be extremely asymmetric due to the pres-
ence of delocalized states for high enough α (see Supplementary 
Material).

In Fig. 1 we show the sample distribution of the maximum 
fidelity Fmax = max{F (t)} [as defined above in Eq. (7)] achieved 
in time interval t ∈ [0, 20τ ], with τ = π J/(2g2) being the corre-
sponding time for which a complete transfer would occur for the 
noiseless case, fr(τ ) ≈ 1, as seen in Sec. 3. That interval is a pretty 
reasonable one in order to guarantee at least one full Rabi cycle 
in most of the samples. Recall that the effective sender-receiver 
hopping strength J ′ dictates the time scale of the dynamics and 
is strongly affected by disorder. Fig. 1 shows that strong long-
range correlations in the disorder distribution enhances the figure 
of merit of QST enormously. Even more impressive is the fact that, 
for α = 2 and α = 3 [see Figs. 1(c) and 1(d), respectively], we find 
the number of occurrences of fidelities Fmax ≈ 1 to be the high-
est one. We also note that the fidelities for α = 2 case [Fig. 1(c)] 
are fairly well distributed across all the possible outcomes, thus 
indicating a transition regime.

In order to provide an explicit view on what is actually going 
on in the QST process, in Fig. 2(a) we show the time evolution 
of the occupation probabilities f 2

i (t) of the sender (i = s), receiver 
(i = r), and channel [ f 2

ch(t) ≡ ∑N
n=1 f 2

n (t)] spins for one particular 
(ordinary) sample, out of many successful ones (meaning Fmax ≈ 1) 
encountered for α = 3 [see Fig. 1(d)]. There we see a genuine 
Rabi-like behavior yielding a very high-quality QST. We reduced 
the time scale to 2τ so we can have a more detailed view on a 
Fig. 1. (Color online.) Maximum-fidelity histogram for 500 independent realiza-
tions of disorder for α = 0, 1, 2, and 3. Results were obtained from exact nu-
merical diagonalization of the full Hamiltonian Ĥ = Ĥch + Ĥ int with N = 50, ωn , 
n = 1, . . . , N , given by Eq. (3), ων = 0, and gν = g = 0.001 J . The maximum fidelity 
Fmax = max{F (t)} [see Eq. (7)] was registered during time interval [0, 20τ ], with 
τ = π J/(2g2).

complete cycle. Therefore, in this case the transfer time happens 
to be roughly the same as for the noiseless case. Furthermore, we 
note that the channel is barely populated for all practical purposes 
[see the inset of Fig. 2(a)], meaning that Eq. (4) is a robust approx-
imation. Those residual beatings seen for f 2

ch(t) are due to some 
negligible mixing between both channel and sender/receiver sub-
spaces. One could get rid of it by further decreasing g . Care must 
be taken, though, not to compromise the transfer time scale since 
it goes as ∼ 1/g2.

Fig. 2(b) shows the corresponding spatial distribution of eigen-
states, |〈i|ψk〉|2, along the whole spectrum k. First, note that the 
outer parts of the spectrum are mostly populated by localized-
like eigenstates [54]. Indeed, the eigenstates get more delocalized 
as we move towards the center of the band [see Supplementary 
Material]. We also point out the asymmetrical aspect of the eigen-
state distribution. Still, it turns out to be possible to span an in-
dependent subspace involving only the sender and receiver spins 
[Eq. (4)] so that their corresponding eigenstates become close to 
(|s〉 ± |r〉)/√2. We shall also remark that although we have set the 
sender and receiver frequencies to the very center of the band, that 
is ωs = ωr = 0, this pair of eigenstates responsible for the Rabi-
like dynamics of the system might be slightly shifted around that 
region due to the lack of particle-hole symmetry in the channel. 
That, however, does not compromise the efficiency of the transfer. 
By looking closely at Fig. 2(b), we spot many eigenstates showing 
strong asymmetries between spins 1 and N . Fortunately, since ask
and ark are fairly balanced across the spectrum and due to the fact 
that the channel eigenstates lying around the middle of the band 
(less asymmetric) have great influence on �/ J ′ , given that the 
terms in the sum in Eqs. (5) and (6) go as ∼ 1/Ek , the sender and 
receiver spins are able to find a way out through such asymme-
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Fig. 2. (Color online.) (a) Time evolution of the occupation probability amplitudes 
for the sender f 2

s (t), receiver f 2
r (t), and channel spins, the latter being the sum of 

the amplitudes within the channel, namely f 2
ch(t) ≡ ∑N

n=1 f 2
n (t). For this particular 

realization, we simply took one of the samples which provided Fmax ≈ 1 in Fig. 1(d) 
for α = 3. Note that the time scale has been reduced to twice the transfer time for 
the noiseless case, that is 2τ , for a better view of a Rabi-like cycle. The inset shows 
the very same graph but for a much smaller scale of amplitude in order to account 
for the (rather negligible) behavior of f 2

ch(t). (b) Corresponding density plot of the 
eigenstate spatial distribution |〈i|ψk〉|2 for every k (in increasing order of energy). 
Darker (brighter) spots indicate lower (higher) overlaps. Note the formation of a pair 
of states in the middle of the band with strong overlap in |s〉 and |r〉 simultaneously. 
These are the source of such high-fidelity QST rounds. System’s parameters: N = 50, 
ων = 0, and gν = 0.001 J .

tries and establish an effective resonant interaction between them 
thus resulting in an almost perfect QST for most of the samples.

Now, in order to evaluate a representative outcome for Fmax for 
a given α, in Fig. 3 we plot its average over all the samples for 
a large window of α values. This clearly illustrates the overall be-
havior of the occurrences of Fmax as one increases the degree of 
long-range correlations in the disorder distribution. Note that we 
are also showing the curve for many values of g , only to stress the 
importance of setting this parameter as smaller as possible so as to 
avoid mixing between the channel and sender/receiver subspaces. 
Indeed, the performance quality of QST is affected by that. As we 
go towards smaller values of g , there is a saturation point indicat-
ing that Hamiltonian (4) has reached its final form. It means that 
if we keep on decreasing g , the QST fidelity will not get any better 
and the time scale of the transfer will increase substantially. Fur-
thermore, we identify in Fig. 3 that the Fmax growth profile is more 
pronounced between α = 1 and α = 3 until it saturates for higher 
values of α. This is associated to the fact that the long-range cor-
related sequence generated by Eq. (3) becomes nonstationary for 
Fig. 3. (Color online.) Maximum fidelity versus α averaged over 500 independent 
disorder realizations. Now, we have set g/ J = 0.001, 0.01, 0.1, and 0.2, while other 
system’s parameters were kept as usual, namely N = 50 and ων = 0. The maximum 
fidelity Fmax = max{F (t)} for each sample was again obtained during time interval 
[0, 20τ ], with τ = π J/(2g2).

α > 1 and acquires persistent character when α > 2, thereby trig-
gering the appearance of delocalized states in the middle of the 
band [54,59].

4.3. Measurement-time issues

So far, we have been concerned with the quality of QST, that is, 
the channels’ capability of generating an effective Rabi dynamics 
between the outer spins even when subjected to a certain class of 
on-site fluctuations. That was carried out by evaluating the fidelity 
statistics over a given time interval. It happens to be very relevant 
on its own the fact that, eventually, one should be able retrieve the 
state with F ≈ 1 in an increasing number of samples when α ≥ 2
(see Fig. 1). For practical implementations, though, a rather precise 
measurement time is required. At this point, we must stress that 
disorder, in general, besides being detrimental to the QST fidelity, 
also makes it trickier (if not impossible) to predict the exact time 
(or, at least, a proper time window) at which the state is supposed 
to reach the desired location with highest probability. Still, in this 
last part of our discussion, let us address the above timing issue.

As pointed out earlier, the transfer time for a noiseless, uni-
form channel operating in the off-resonant regime is τ = π J/(2g2)

[6]. For an arbitrary channel one should have τ ′ = π/(2| J ′|), with 
(recalling) J ′ being the effective coupling between spins s and r, 
determined by g and the sum in Eq. (6). Note that even if a given 
sample does yield a very small �/ J ′ – which happens quite often 
for α ≥ 3 – thus allowing for very high fidelities, it is likely that 
J ′ itself will have been shifted due to fluctuations in the spec-
trum of the channel, thus altering the time scale of the dynamics. 
Now, given the circumstances, what we can do is to evaluate, given 
a threshold for the transfer quality, the fraction of samples assured 
to keep the original, prescribed measurement time τ and/or access 
how much it deviates from that. In Fig. 4 we show the above for 
F (τ ′) > 0.95 and F (τ ′) > 0.99 against various times τ ′ (in units 
of τ ) and for α = 3, 3.5, and 4. We note that the largest fractions 
of successful QST outcomes happens at times of the order of τ . 
This becomes even more prominent when α = 4 for which it dis-
plays a Gaussian-like profile around τ ′/τ = 1, reaching about a 45%
(15%) chance of retrieving the state at the original time with fideli-
ties above 0.95 (0.99) [compare Figs. 4(a) and 4(b)]. One should 
also note it shrinks upon increasing the fidelity threshold. This is 
a direct consequence of featuring a large number of outcomes oc-
curring around the same time spot. In Rabi-like QST protocols, the 
fidelity evolves periodically following fr(t) � sin( J ′t) – just like 
in a two-level system – and so, picturing out a complete cycle in 
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Fig. 4. Fraction (%) of samples displaying (a) F (τ ′) > 0.95 and (b) F (τ ′) > 0.99 ver-
sus τ ′/τ , with τ ′ = π/(2| J ′|) and τ = π J/(2g2) being the measurement time for 
the noiseless case. We considered 500 independent realizations of disorder with 
α = 3, 3.5, and 4 in both panels. Results were obtained from exact numerical diag-
onalization of the full Hamiltonian Ĥ [cf. Eqs. (1) and (2)] for N = 50, gν = 0.01 J , 
and ων = 0. We show the time interval featuring the most relevant outcomes, 
though there is a finite (small) possibility of finding successful transfers at longer 
times.

time, that is what should happen as we go towards the top of 
the peak.

5. Concluding remarks

We studied a QST protocol through a X X spin channel with on-
site long-range-correlated disorder. The protocol involved a couple 
of communicating spins weakly coupled to the channel not match-
ing with any of its normal modes so that the transfer takes place 
through Rabi-like oscillations between the ends of the chain [6,7,
19]. We focused on the reduced sender/receiver description based 
on Hamiltonian (4) which embodies all the relevant information 
regarding the way they are affected by the channel, thus allowing 
one to foresee the QST outcome based on the renormalized param-
eters contained in the two-site effective Hamiltonian.

We showed that this class of weakly-coupled models are indeed 
robust against external perturbations [45] as the effective interac-
tion between sender and receiver spins do not depend upon the 
entire wavefunction of the spectrum but rather on the local am-
plitudes of the spins they are connected to. Because of that, we 
realize we do not necessarily need a perfect symmetric chain to
achieve an almost perfect QST. When scale-free correlations with 
a power-law spectral density S(k) ∝ k−α set in, the disorder distri-
bution is such that it can support delocalized eigenstates around 
the center of the band [54]. Those are able to provide a broader, 
more balanced distribution of amplitudes even in the presence 
of asymmetries, what makes it possible to induce effective reso-
nant interactions between |r〉 and |s〉, provided α is high enough. 
We stress, however, that this class of weak-coupling models [6,7]
should find practical limitations (especially for large chains) for 
they usually require long transfer times. Also, disorder, in general, 
promotes fluctuations in the measurement time, which is another 
source of errors.

It is worthwhile to highlight the crucial role of the intrinsic cor-
relations in the disorder distribution in the performance of QST. As 
the correlation degree α increases in Eq. (3) the on-site proba-
bility distribution goes from a Gaussian to a bimodal profile. This 
variation on the probability distribution on its own, however, does 
not imply in the improvement of the QST fidelity. We verified this 
by generating a correlated sequence {ωn} followed by a random 
shuffling of the site energies. This very simple procedure destroys 
the intrinsic correlations but maintains the very same probability 
distribution overall. Then, we observed that the withdrawal of cor-
relations yielded F (t) ≈ 0.5 for the same range of α values as in 
Fig. 3 thus ruling out any possibility of carrying out the quantum-
state transfer protocol. Indeed, the main ingredient definitely turns 
out to be the intrinsic correlations within the disorder distribution.

Note that we have not considered the case of structural dis-
order here, that is, fluctuations on the spin couplings. However, 
on-site disorder actually embodies a worst-case scenario since the 
channel also looses its particle-hole symmetry, differently from 
spin-coupling disorder.

We remark that disorder, correlated or not, might arise natu-
rally due to experimental imperfections in the manufacturing pro-
cess of solid state devices for quantum information processing and 
thus finding out was to prevent and/or deal with that becomes 
of great relevance. Here we have seen that long-range correlated 
disorder is not so detrimental to the transfer process as the uncor-
related counterpart. This further promotes the investigation of the 
effects of other particular kinds of fluctuations in the transport of 
quantum information.
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