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We study the dynamics of the 1D Hadamard quantum walk featuring generalized exponential correlated 
phase disorder. We report the existence of distinct dynamical regimes and discuss the prospect of a 
judicious tuning of the strength of localization of the walker via the degree of correlation. In particular, 
we unveil that when the typical correlation length is smaller than the chain size, the maximum spreading 
of the quantum wavepacket is achieved when the underlying disorder displays Gaussian correlations. Our 
work provides a framework for investigating the weakening of Anderson localization due to correlated 
disorder and may also find applications in the context of quantum information processing.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Anderson localization is one of the most solid concepts in 
condensed matter physics [1]. It plays a crucial role in metallic-
insulator transitions and is the main wave mechanism behind 
some ubiquitous transport properties displayed by a wide vari-
ety of natural and artificial systems. In the simplest scenario, a 
single particle hopping through a 1D chain featuring a random 
potential landscape suffers a lack of diffusion thereby remaining 
trapped around a finite region due to exponential localization of 
every eigenstate of the system [2].

While the above is true for uncorrelated disorder, it may break-
down in the presence of embedded correlations. First results along 
this direction came about three decades ago [3,4] addressing the 
case of short-range spatial correlations. Moreover, the appearance 
of a band of extended states with sharp mobility edges in 1D sys-
tems with long-range correlated disorder was reported in Refs. [5]
and [6]. This Anderson-type metal-insulator transition would be 
experimentally confirmed using waveguides [7] shortly after that. 
Another interesting class of systems displaying correlated disor-
der is the one featuring a finite correlation length [8–11]. It has 
been shown that maximum localization in disordered continuous 
potentials takes place when the correlation length is of the order 
of the wavelength [11]. The emergence of extended states as well 
as the coexistence between disordered and ordered bands are also 
verified in quasi-1D systems, such as ladder chains [13,14]. For a 
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review of correlated disorder and its impact on Anderson localiza-
tion phenomena, see Ref. [12].

Many of the disorder configurations discussed above have re-
cently been explored in the light of quantum information process-
ing [15–18]. The motivation is twofold. First, it is desirable to push 
the limits of such protocols against various forms of noise and, sec-
ondly, sometimes disorder can be useful given one is able control it 
(see, e.g., Ref. [15]). Along this direction, we aim to investigate how 
correlated disorder affect the dynamics of a discrete-time quantum 
walk (DTQW) [19,20].

In such, a qubit state (say, on a spin 1/2) is set to propagate by 
repeatedly applying a unitary operator to a given initial configura-
tion. It first shuffles the internal state of the qubit (more precisely, 
it generates a superposition) and then shifts its coefficients to the 
left or right, for a quantum walk on the line, depending on the 
local spin orientation. By doing it several times, interference ef-
fects yield a ballistic spreading profile, in contrast with a diffusive 
one for the classical random walk, thus providing much faster hit-
ting times. On top of that, DTQWs have been treated as a platform 
for, e.g., designing quantum algorithms [21], universal quantum 
computation [22], and studying complex phenomena such as quan-
tum phase transitions [23], topological phases [24–28], localization 
[24,27,29–36], and even nonlinear phenomena [37–39].

Notwithstanding there are plenty of works addressing the ef-
fects of disorder in DTQWs alongside practical implementations 
[40,41], our goal here is to unveil the subtleties of a transition 
from strong to weak localization induced by correlated disorder. 
In a previous work, we dealt with long-range correlations follow-
ing power law spectrum [36]. Here, in particular, we investigate 
a class of generalized exponential correlations. These are versatile 
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correlation functions having Gaussian, pure exponential and uncor-
related disorder as particular cases. Furthermore, stretched expo-
nential correlations frequently develops during the relaxation pro-
cess in glassy materials [42–46]. Exponential correlated disorder 
models find support on various physical backgrounds. Stretched 
exponential correlation functions are widely known to arise from 
the well known Kosterlitz–Thouless-like transition [47]. Similar be-
havior can also be found for the nematic director field [48], within 
enzymatic catalytic activity of lipase B from Candida Antarctica
[49], in distributions of radio and light emissions from galaxies, 
and economy, to name a few [50].

In this work we focus on unveiling how the interplay between 
deviations from Gaussianity and the typical correlation length af-
fects the dynamics of a Hadamard DTQW on the line [20].

2. Model and formalism

The two main ingredients for setting up a DTQW on a 1D array 
are the coin (qubit) space HC spanned by {| ↑〉, | ↓〉} plus another 
set HP for the position states {|n〉} (n = 1, 2, . . . , N), such that the 
total Hilbert space reads H = HC ⊗ HP [20]. We now need some 
operators to act on those states, one of which must carry out the 
“coin tossing” step. For this, we consider the Hadamard coin,

C = 1√
2

(
1 1
1 −1

)
, (1)

where it acts solely on the qubit sector HC . The next procedure is 
the so-called conditional shift S that moves the walker one way or 
the other depending on its internal state, that is S| ↑〉|n〉 −→ | ↑
〉|n + 1〉 and S| ↓〉|n〉 −→ | ↓〉|n − 1〉. Following Ref. [34], we add 
phase disorder in this very step so that it reads

S = | ↑〉〈↑ |
∑

n

(ei2πφn+1 |n + 1〉〈n|)

+ | ↓〉〈↓ |
∑

n

(ei2πφn−1 |n − 1〉〈n|), (2)

where φn is some disordered phase. Putting all those elements 
together, the DTQW is embodied by a unitary operator U = S(C ⊗
I) acting on |ψ(t = 0)〉 over and over until in the t-th step |ψ(t)〉 =
U t |ψ(t = 0)〉.

Let us now make some considerations over the type of disorder 
we deal with in this work. Instead of assigning a standard (uncor-
related) random box distribution to {φn} – as done in [34], where 
it was shown that localization inevitably sets up for strong enough 
static disorder – we address a special kind of correlated fluctu-
ations, namely generalized exponential correlated disorder gener-
ated from [51]

Vn =
N∑

m=1

ηmexp
[−(|n − m|/ζ )α

]
, (3)

where ηm represents a random phase uniformly distributed in in-
terval [−0.5, 0.5] (independently generated for each sample) and 
{α, ζ } controls the degree of correlations. The parameter α con-
trols the degree of non-Gaussianity in the disorder distribution. 
For α = 0 there is no disorder. Gaussian correlations correspond 
to α = 2 and the particular case of α = 1 accounts for exponen-
tially decaying correlations, where ζ ends up being the standard 
correlation length [52]. In the limiting case of ζ = 0 one reaches a 
fully uncorrelated disorder distribution.

We now normalize {Vn} such that 〈Vn〉 = 0 and 〈V 2
n 〉 = 1, so 

as to maintain the disorder properties regardless of the system 
size N , and further define φn = 0.5 tanh (Vn) + 0.5 to set its range 
2

within interval [0, 1] in order to set the phases in the shift op-
erator [Eq. (2)] in between 0 and 2π . We emphasize that this 
transformation from Vn to φn does not affect the correlation pro-
file embedded in the disorder distribution. To have a better look 
over the resulting phase landscape, in Fig. 1 we show some typi-
cal samples of the sequence {φn} for various ζ and α values and 
N = 10000. In the same Figure (bottom panels), we plot the corre-
sponding autocorrelation functions, defined as

C(r) = 1

N − r
∗

N−r∑
n=1

[
(φnφn+r) − 〈φn〉2

]
, (4)

so as to unveil what is going on underneath it. Therein, we clearly 
see the role of parameters ζ and α. The former acts by smooth-
ing up the fluctuations, what increases the degree of correlations 
within the disorder distribution. This results in a slower decay of 
the autocorrelation function with distance r. Now keeping ζ fixed, 
the behavior of α is much more subtle. It strongly depends on ζ
and N in a way it may either hold the decay of the correlation 
function for longer r or push it more critically (see Fig. 1; compare 
the outcomes for ζ = 1 and ζ = 1000 in particular). Later on, we 
will see that this ultimately depends on the ratio ζ/N .

Throughout this paper, our analysis is largely built upon the 
wavepacket spreading (standard deviation)

σ(t) =
√∑

n

(n − 〈n(t)〉)2 Pn(t), (5)

where Pn(t) = |〈ψ(t)| ↑, n〉|2 + |〈ψ(t)| ↓, n〉|2 is the walker’s occu-
pation probability at the n-th site and 〈n(t)〉 = ∑

n nPn(t) is the 
average position.

3. Results and discussion

In this section we display and discuss our numerical results 
for the disordered DTQW featuring generalized exponential cor-
relations introduced previously. The initial state is localized (and 
symmetric in respect to the coin) in the middle of the chain at 
n0 = N/2 having the form

|ψ(t = 0)〉 = 1√
2
| ↑,n0〉 + i√

2
| ↓,n0〉, (6)

for all the simulations below. In addition, every plotted quantity 
is averaged over 1000 independent realizations of disorder unless 
stated otherwise. We first show the general profile of the time 
evolution of the walker in Fig. 2 where we display the space-
time diagram for Pn(t) for a representative value of α and cor-
relations length ζ representing short and long-ranged correlated 
disorder. We clearly observe that for short-ranged correlated dis-
order (ζ = 1) the walker remains fully localized around its initial 
position. This should come with no surprise as the underlying cor-
relations are effectively low and disordered DTQWs share some 
similarities with Anderson localization theory [24,27,29–34]. For 
long-ranged correlated disorder (ζ = 1000), we spot a significant 
portion of the probability amplitude coming out of n0 whereas a 
finite fraction of the initial packet is still retained around the ini-
tial site. This is another characteristic of the localized nature of the 
quantum walker. Next, we move towards a more accurate descrip-
tion of the localization properties of the system by analyzing σ(t)
in chains with different sizes.

In Fig. 3 we plot the time evolution of the standard deviation 
σ(t) versus t/N for N = 2000 up to 16000. For short-range cor-
relations (ζ = 1) the wavepacket width displays an initial diffusive 
spreading with σ ∝ t1/2. This indicates that the initial spreading 
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Fig. 1. Top: typical, one sample series of {φn} for α = 0.25, 0.75 and ζ = 1, 10, 100, 1000 with N = 10000. Bottom: corresponding autocorrelation functions generated by 
C(r) = [1/(N − r)] ∗ ∑N−r

n=1 [(φnφn+r) − 〈φn〉2] averaged over 30 independent samples, against r.
Fig. 2. Time evolution of the occupation probability Pn(t) versus n for α = 0.5 and 
ζ = 1 (top panel) and ζ = 1000 (bottom panel). Notice that the walker remains fully 
localized for short-ranged correlations while a significant part of it spreads out in 
the case of long-range correlated disorder. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

is already strongly influenced by the underlying disorder. At long-
times, the wavepacket width saturates at a finite size-independent 
value signaling Anderson localization. For long-ranged correlated 
disorder (ζ = 500 and 1000), the initial spreading becomes ballis-
3

tic, thus not being affected by disorder and becoming similar to 
the one taking place in a disorder-free DTQW. (In this case, satu-
ration of the wavepacket width at t � N occurs due to finite size 
effects.) It is clear to spot from Eq. (3) that taking the limit ζ → ∞
renders Vn = ∑

m ηm , meaning that all the phases in the shift op-
erator [Eq. 2] (for every n) are the same.

The long-time behavior of σ and its dependence with α and 
ζ calls for a more detailed analysis. By analyzing the scaled 
wavepacket width in the asymptotic limit, σ/N = σ(t → ∞)/N , 
versus the scaled correlation length ζ/N , we observe that σ/N ∝
(ζ/N)/[1 + b(ζ/N)] regardless of α, with b being a fit parameter. 
Therefore for ζ/N << 1 entails that the spreading is proportional 
to ζ , meaning that if the correlation length is much smaller than 
the chain size, it dictates the typical localization length. Fig. 4
shows that for a representative case with α = 1. For ζ > N our 
results indicate that the σ(t → ∞)/N is roughly constant. This un-
veils that the wavepacket will spread over the entire chain when 
the typical correlation length becomes much larger than the chain 
size, the width being proportional to the chain size.

To see it further, in Fig. 5 we plot the scaled wavefunction 
width versus α for various ζ/N values. It is now seen that the long 
and short-ranged correlated disorder regimes present quite distinct 
trends. For ζ > N , we observe that the scaled width of the walker 
increases monotonically as α is increased. On the other hand, σ/N
reaches a maximum around α � 2 when ζ < N . This indicates that 
in the regime of finite correlation lengths (smaller than the chain 
size), Gaussian-like correlations in the disorder distribution allow 
for the maximum spreading of the wavepacket, thus signaling the 
condition of maximum weakening of Anderson localization.
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Fig. 3. Standard deviation σ(t) versus t/N for (a) ζ = 1, (b) ζ = 500, (c) ζ = 1000, fixed α = 0.5, and various system sizes from N = 2000 up to 16000.
Fig. 4. Scaled long-time wavefunction spreading σ/N = σ(t → ∞)/N versus ζ/N
for N = 4000 up to 32000 and α = 1. Solid line is the fitting function, with b being 
an adjustable parameter.

In order to analyze the ubiquitous behavior around α = 2 we 
carry out a statistical analysis over the disorder distribution by tak-
ing series of increments of φn defined as θn = φn −φn−1. Therefore, 
the series {θn} contains N − 1 terms. Next we divide it in s seg-
ments of size ζ . The number of segments is then Ns = N/ζ and we 
calculate the variance within each segment as 
s =

√
〈θ2

n 〉s − 〈θn〉2
s

where 〈·〉s represents the average within segment s. The mean lo-
cal variance of the increments is finally given by 
 = ∑N/ζ

s=1 
s/Ns . 
In Fig. 6 we plot 
 (averaged over 20 independent samples) ver-
sus α and observe that as it approaches α = 2 the local variance 
decreases suggesting that phase fluctuations are smoother in that 
region, what explains the trend seen in Fig. 5 for ζ < N .
4

4. Concluding remarks

In this work we studied the dynamics of a disordered DTQW 
featuring a generalized exponential correlated phase disorder con-
trolled by two parameters, namely the generalization exponent 
α and the generalized correlation length ζ . We showed that for 
ζ << N , the walker remains trapped around its initial position af-
ter an initial diffusive spreading, regardless to the α value. Our 
calculations also indicate that the size of the region over which 
the walker remains trapped scales as σ ∝ ζ . On the other hand 
for ζ >> N the walker delocalizes ballistically. In this regime in-
creasing α leads to a monotonic increase of the wavepacket width. 
When the typical correlation length ζ is smaller than the sys-
tem size N instead, the saturation wavepacket width varies non-
monotonically with α, reaching maximum for α � 2, slowly de-
caying for larger values of α. It is worth pointing out that α = 2
brings about Gaussian correlations. By evaluating the mean local 
variance over segments sized by the generalized correlation length, 
we showed that phase fluctuations get smoother in the vicinity of 
α = 2.

Experiments addressing delocalization transition induced by 
long-range correlated disorder have put forward ways to manipu-
late correlations within disordered setups [7]. Efforts along similar 
lines should bring valuable support for the theoretical predictions 
concerning discrete-time quantum walk dynamics in distinct dis-
order regimes.
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Fig. 5. Scaled long-time wavefunction spreading σ/N = σ(t → ∞)/N versus α for (a) ζ/N = 0.2, (b) ζ/N = 0.4, (c) ζ/N = 2, and (d) ζ/N = 4, and N = 2000 up to 16000.
Fig. 6. Mean local variance 
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s=1 
s/Ns against α over s segments 
s =√

〈θ2
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