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Abstract

We study the nature of collective excitations in harmonic chains with diluted disorder.

Using a transfer matrix method, we compute the localization length of eigenmodes within the

band of allowed energies in order to investigate the new extended states which appear in this

model. To follow the time evolution of an initially localized energy input, we calculate the

second moment M2ðtÞ of the energy spatial distribution. We found that for an impulse initial

excitation, the super-diffusive energy spread is not affected by the presence of new resonant

modes. However, the energy spread becomes faster for a displacement excitation.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Usually, disorder induces localization of collective excitations thus degrading
transport properties. This effect is largely pronounced in low dimensions. In
particular, the one-electron eigen-states in the 1D Anderson model with site-diagonal
uncorrelated disorder are exponentially localized for any degree of disorder [1].
However, several 1D models with correlated disorder have been proposed which
see front matter r 2005 Elsevier B.V. All rights reserved.
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exhibit delocalized states [2–6]. Among these models, the diluted Anderson chain has
attracted a renewed interest [7–11].

Hilke [7] introduced an Anderson model with diagonal disorder diluted by an
underlying periodicity. The model consists of two interpenetrating sub-lattices, one
composed of random potentials (Anderson lattice) and the other composed of non-
random sites of constant potential. Due to the periodicity, special resonant energies
appear. A similar model was used to study the electronic properties of semiconductor
alloys [8]. The existence of an extended state at the band center was demonstrated,
both analytic and numerically. The diluted Anderson model was extended to include
a general diluting function which defines the on-site energies within each non-
random segment [9]. Using a block decimation approach, it was demonstrated that
this model displays a set of extended states, the number of which strongly depends
on the length of the diluting segments and the symmetry of the diluting function.
Recently, it was shown that the presence of new extended modes in the 1D diluted
Anderson model promotes a sub-diffusive spread of an initially localized electron
wave-packet [10]. The extension for a square lattice geometry has shown that this
model can exhibit a true metal–insulator 2D transition with mobility edges
delimiting a band of extended states [11].

The Anderson localization of collective excitation by a random potential is a
quite general feature. It applies, for example, to the study of magnon localization
in random ferromagnets [12]. Further, the collective vibrational motion of 1D
disordered harmonic chains of N random masses can also be mapped onto an
one-electron tight-binding model [13]. In such a case, most of the normal vibra-
tional modes are localized. However, there are a few low-frequency modes not
localized, whose number is of the order of

ffiffiffiffiffi
N

p
[13,14]. It was shown that correla-

tions in the mass distribution produce a new set of non-scattered modes in this
system [15]. Also, non-scattered modes have also been found in disordered
harmonic chain with dimeric correlations in the spring constants [16]. By using
analytical arguments, it was also demonstrated that the transport of energy in mass-
disordered harmonic chains is strongly dependent on non-scattered vibrational
modes as well as on the initial excitation [17]. For impulse initial excitations,
uncorrelated random chains have a super-diffusive behavior for the second
moment of the energy distribution [M2ðtÞ / t1:5], while for initial displacement
excitations a sub-diffusive spread takes place [M2ðtÞ / t0:5]. The dependence of the
second moment spread on the initial excitation was also obtained in Ref. [18].
Recently, several studies have been employed addressing the controversial question
about the thermal conductivity behavior of mass chains in the thermodynamic limit
[19–21].

In this work, we study the nature of collective excitations in harmonic chains with
diluted disorder. The density of vibrational states is obtained, as well as accurate
estimates for the Lyapunov exponent. These are used to characterize the new
extended vibrational modes which appear in this model. In order to study the time
evolution of an initially localized energy input, we calculate the second moment
M2ðtÞ of the energy spatial distribution. We show that these resonant modes are able
to modify the dynamics of the energy spread.



ARTICLE IN PRESS

S.S. Albuquerque et al. / Physica A 357 (2005) 165–172 167
2. Vibrational modes

We start by considering a disordered harmonic chain of N masses, for which the
equation of motion for the displacements qn ¼ un exp io with vibrational frequency
o is [14,15]

ðbn�1 þ bn � o2mnÞun ¼ bn�1un�1 þ bnunþ1 . (1)

Disorder is introduced on the masses mn which are uncorrelated random numbers
chosen from a previously defined distribution. In our calculations, we will use units
such that all elastic force couplings bn ¼ 1 and the random site masses will be taken
uniformly from a given interval. It is interesting to notice that the above motion
equation has the same form exhibited by the Schroedinger equation for the
eigenfunction amplitudes cn of a tight-binding Hamiltonian describing one-electron
of energy E moving in a potential �n coupled by hopping transfer terms tn. Mapping
the harmonic chain model into the tight-binding Hamiltonian is done by the
replacements cn ! m

1=2
n un, E ! o2, �n ! ðbn�1 þ bnÞ=mn and tn ! �bn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnmnþ1

p

[22]. Therefore, the harmonic chain with uncorrelated random masses is mapped into
a tight-binding model with correlated diagonal and off-diagonal terms. These
effective correlations are responsible for new features presented by the vibrational
modes, in particular, the weak sensitivity of the low-energy modes to the underlying
disorder.

The diluted harmonic chain is constructed by introducing a new site between each
original pair of neighboring masses. These sites have identical masses m0. Eq. (1) can
be rewritten as

unþ1

un

 !
¼

2 � mno2 �1

1 0

 !
un

un�1

 !
. (2)

For a specific frequency o, a 2 	 2 transfer matrix Tn connects the displacements at
the sites n � 1 and n to those at the site n þ 1:

Tn ¼
2 � mno2 �1

1 0

 !
. (3)

Once the initial values for u0 and u1 are known, the value of un can be obtained by
repeated iterations along the chain, as described by the product of transfer matrices

QN ¼
YN
n¼1

Tn . (4)

The localization length of each vibrational mode is taken as the inverse of the
Lyapunov exponent g defined by [14,15]

g ¼ lim
N!1

1

N
log

jQNcð0Þj

jcð0Þj
, (5)

where cð0Þ ¼ ðu1

u0
Þ is a generic initial condition. Typically, 5 	 106 matrix products

were used to calculate the Lyapunov exponents.
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Fig. 1. Normalized density of states (DOS) as a function of energy E obtained using Dean’s method for a

chain with N ¼ 105 sites: (a) random harmonic chain with masses taken uniformly from the interval ½1; 3
;
(b) diluted 1D harmonic chain with m0 ¼ 0:75. The DOS displays a pseudo-gap for m0ahmni, which is

reminiscent of the gap appearing in the DOS of the corresponding pure chain.
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We obtain the density of states (DOS) using the numerical Dean’s method [22].
Strong fluctuations in the DOS are related to the presence of localized states,
whereas a smooth DOS is usually connected to the emergence of delocalized states
[6,15]. In Fig. 1 we show the normalized DOS as a function of o2 obtained using
Dean’s method for a chain with N ¼ 105 sites of the (a) random harmonic chain with
masses taken uniformly from the interval ½1; 3
 and (b) diluted 1D harmonic chain
with m0 ¼ 0:75. One notices that the DOS for the diluted chain displays a pseudo-
gap. We found that this gap is always present whenever m0ahmni, which is
reminiscent of the gap present in the DOS of the corresponding pure chain. At the
upper gap edge the DOS presents a diverging singularity, while the lower one is
rounded by the underlying disorder.

In Fig. 2 we show the Lyapunov exponent g as a function of o2 obtained from the
transfer matrix method for exactly the same cases as in Fig. 1. We can see that, due
to the diluted disorder, the system displays a new extended state at oc40. Close to
the critical frequency, g vanishes as g / ðo� ocÞ. The frequency of this extended
vibrational mode is exactly at the DOS singularity. This mode can be viewed as an
extended harmonic mode which has null displacements at the sites with random
masses.
3. Energy transport

In order to study the time evolution of an initially localized energy pulse, we
calculate the second moment of the energy distribution [17,18]. This quantity is
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Fig. 2. Lyapunov exponent g as a function of o2 obtained from the transfer matrix method for a chain

with N ¼ 5 	 106 sites: (a) random harmonic chain with masses taken uniformly from the interval ½1; 3
;
(b) diluted 1D harmonic chain with m0 ¼ 0:75. It shows clearly the new resonant state at oc40 induced by

the dilution of the disorder distribution.
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related to the thermal conductivity by Kubo’s formula [17]. The classical
Hamiltonian H for an harmonic chain can be written as

H ¼
XN

n¼1

hnðtÞ , (6)

where the energy hnðtÞ at the site n is given by

hnðtÞ ¼
P2

n

2mn

þ
bn

4
½ðQnþ1 � QnÞ

2
þ ðQn � Qn�1Þ

2

 . (7)

Here Pn and Qn define the momentum and displacement of the mass at the nth site.
The fraction of the total energy H at the site n is given by hnðtÞ=H and the second
moment of the energy distribution, M2ðtÞ, is defined by [17]

M2ðtÞ ¼
XN

n¼1

ðn � n0Þ
2
½hnðtÞ=H
 , (8)

where an initial excitation is introduced at the site n0 at t ¼ 0. Using the fourth-order
Runge–Kutta method, we solve the Hamilton’s equations for PnðtÞ and QnðtÞ and
calculate M2ðtÞ. The second moment of the energy distribution M2ðtÞ has the same
status of the mean-square displacement of the wave-packet of an electron in a solid
[17]. In random harmonic chains with an initial impulse excitation, the energy spread
is super-diffusive (M2ðtÞ / t3=2) in contrast with the slower sub-diffusive spread of an
initial displacement excitation (M2ðtÞ / t1=2) [17,18]. The origin of these distinct
asymptotic dynamics was shown to originate on the way modes are populated by
these two different kinds of excitations. In the case of impulse excitations, the modes
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Fig. 3. The second moment of the energy distribution, M2ðtÞ versus time t for a diluted 1D harmonic chain

with m0 ¼ 1:0 and N ¼ 1:5 	 104 sites. The random masses were chosen within ½0:5; 3:5
. We considered

two kinds of initial conditions: (a) displacement excitations and (b) impulse excitation. The solid lines

correspond to the excitation spread in the non-diluted random chain.
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are populated uniformly. On the other hand, the contribution of a vibrational mode
of frequency o is proportional o2 for a displacement excitation [17]. Therefore, the
effectively extended low-energy modes play distinct roles in these two cases and their
weak contribution to a displacement excitation results in the slower energy spread.
In Fig. 3 we show the second moment of the energy distribution, M2ðtÞ versus time t

for a diluted 1D harmonic chain with m0 ¼ 1 and N ¼ 1:5 	 104 sites. The random
masses were chosen within ½0:5; 3:5
. We consider displacement initial excitations in
(a) and impulse initial excitation in (b). Here, we put the initial excitation in a diluting
site n0 close to the chain center. The asymptotic dynamics in the case of impulse

initial excitation [M2ðtÞ / t1:5] has the same super-diffusive spread presented by the
usual random chain with uncorrelated masses. However, for the case of displacement

initial excitation, the energy spread in the diluted chain becomes diffusive, i.e.,
[M2ðtÞ / t1]. This shall be contrasted with the slower sub-diffusive spread
[M2ðtÞ / t0:5] that takes place for uncorrelated random mass chains.
4. Conclusions

In summary, we studied the nature of collective excitations in harmonic chains
with diluted disorder. In this model system, sites of constant mass m0 intercalate
random masses taken from an uniform distribution. This model presents an
extended harmonic state at frequency oc with null displacement at the random
masses. The Lyapunov exponent vanishes linearly as the resonance frequency is
approached. Further, the DOS presents a diverging singularity at the resonance
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frequency. We showed that the presence of this resonant mode can modify the energy
spread of an initially localized excitation. By calculating the second moment M2ðtÞ of
the energy spatial distribution, we found that an initial impulse excitation spreads
super-diffusively [M2ðtÞ / t1:5] irrespective to the presence of dilution. On the other
hand, the spread of an initial displacement excitation is strongly affected by the
dilution changing from a sub-diffusive behavior [M2ðtÞ / t0:5] in the absence of
dilution to a faster diffusive spread [M2ðtÞ / t1]. Therefore, the presence of new
extended modes and the faster energy spread can be relevant to the thermal
conductivity of harmonic chains with diluted disorder. It would be interesting to see
this point being addressed in future contributions to this subject.
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