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A B S T R A C T

The 1D Anderson model featuring uncorrelated diagonal disorder is considered. The wavefunction statistics
associated to transitions between distinct locations is analyzed. In the presence of mild disorder, the local
squared wavefunctions, that is occupation probabilities, obey exponential statistics. When disorder is high,
amplitudes measured near the input site are well described by Rician distributions, a form of sub-exponential
statistics, due to the influence of strongly localized modes. This results in a reduced likelihood of rogue wave
events. When the statistics is taken over various disorder realizations or locations, the lack of knowledge over
the rate of the exponential processes acting locally yields long-tailed distributions. As a consequence, rogue
waves become more frequent at locations closer to the input for increasing disorder strength. Our findings can
be used to assess the occurrence of extreme events as well as the degree of localization over a broad class of
disordered models.
1. Introduction

Extreme events such as rogue waves are ubiquitous in many physical
systems. From the ocean [1] to the optical domain [2], these events are
unpredictable outliers yielding amplitudes far above the average [3]. As
such, they can yield to hazardous consequences to ships and the like.
Understanding their generation mechanism in detail either of linear
and/or nonlinear models is thus paramount [4–14].

Linear rogue waves in particular are usually studied on disordered
media [13,15–22]. Indeed, some degree of noise, whatever its ori-
gin, must be present to generate superposition of random complex
amplitudes (phasors). Simple wave models predict that the resulting
amplitude (squared) of those waves must obey Rayleigh (exponential)
statistics in the asymptotic limit of a large number of uncorrelated
phasors [23]. In optics, such condition is associated to a fully developed
speckle. A distinct feature of extreme waves is therefore deviations that
go beyond the exponential regime – the so-called 𝐿-shaped or heavy
tailed statistics – when outliers occur more often than predicted [3].

Disordered systems are ubiquitous in condensed-matter physics. The
theory of Anderson localization [24] establishes that the wavefunction
of a single particle will be exponentially localized for any amount of
uncorrelated disorder in 1D and 2D lattices. The interplay between
localization and the onset of rogue waves has been gaining interest
recently [21,22,25] (see also [26]). We also remark that deviations
from Rayleigh statistics in random media has been studied for decades
in radiation scattering [27,28].
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Our focus here is to explore anomalous fluctuations and their as-
sociated statistics in standard Anderson chains. We discuss how a
given speckle behavior emerges due to the presence of localized states
under the influence of diagonal (on-site) disorder. By mapping the
quantum time evolution onto a random phasor sum model, we use
speckle theory [23] to analyze the specific role of the disorder on the
statistics of intensities 𝐼 = |𝛹 |2. We will see that the distance from
the input site plays an important role in the prediction of rogue waves.
The closer the probe is to the source, those events should occur less
frequently than predicted by exponential statistics for a time series
acquired for a given disorder sample. In this case the intensities are
found to assume Rician-type distributions. Long-tailed distributions
arise when the data pertaining to distinct disorder realizations and/or
different output locations are jointly considered. We show that as those
distributions raise the rogue-wave intensity threshold with the disorder
strength 𝑊 , making such events rarer to occur at locations farther from
the source.

2. Model and methods: Speckles from Hamiltonian time evolution

In this section we introduce the Anderson model and prepare the
ground for the speckle analogue of its dynamics. For the general reader
that has never had any contact with the speckle theory, we refer to the
excellent book in [23]. Now, consider a single particle hopping in a 𝑁-
site linear chain with periodic boundary conditions. The corresponding
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Hamiltonian is (ℏ = 1)

𝐻 =
𝑁
∑

𝑛=1
𝜖𝑛𝑎

†
𝑛𝑎𝑛 −

∑

⟨𝑛,𝑚⟩
𝐽𝑛,𝑚𝑎

†
𝑚𝑎𝑛, (1)

where 𝐽𝑛,𝑚 is the nearest-neighbor hopping strength, 𝜖𝑛 is the disor-
dered local potential, and 𝑎𝑛 (𝑎†𝑛) is the particle creation (annihilation)
operator for the 𝑛th site. Let us set the hopping strength uniform along
the lattice, 𝐽𝑛,𝑚 = 𝐽 (hereafter defined as our standard energy unit), and
𝜖𝑛 as a random variable uniformly distributed in [−𝑊 ∕2,𝑊 ∕2], with 𝑊
being the disorder width.

When we consider a delta-like initial state |𝜓(0)⟩ = |𝑛0⟩, its quantum
time evolution reads

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡|𝑛0⟩ =
∑

𝑘
𝑒−𝑖𝐸𝑘𝑡𝑣𝑘,𝑛0 |𝐸𝑘⟩, (2)

where |𝐸𝑘⟩ and 𝐸𝑘 are the eigenstates and eigenvalues of the Hamilto-
nian, respectively, with 𝑣𝑘,𝑛 = ⟨𝑛|𝐸𝑘⟩ (assumed to be real).

In the 1D Anderson model featuring diagonal uncorrelated disor-
der, all eigenstates are expected to be exponentially localized for any
amount of disorder in the thermodynamic limit. It means that the
eigenstates amplitudes are all of the form 𝑣𝑘,𝑛 ∝ 𝑒−|𝑛−𝑛𝑘|∕𝜉𝑘 , each 𝑘
being related to a different 𝑛𝑘. The factor 𝜉𝑘 is the so-called localization
length and accounts for how large the eigenstate tail is. In turn, the
eigenvalues 𝐸𝑘 are also randomly distributed with respect to the typical
density of states displayed by Anderson arrays. In the long-time regime
and considering time intervals 𝛥𝑡𝐽 ≫ 1 the phases 𝜙𝑘(𝑡) = −𝐸𝑘𝑡
(modulo 2𝜋) can be effectively regarded as random variables uniformly
distributed in (0, 2𝜋). The local wavefunction can finally be cast as the
random phasor sum

𝜓(𝑛, 𝑡) = ⟨𝑛|𝜓(𝑡)⟩ =
𝑁
∑

𝑘=1
𝑎𝑘𝑒

𝑖𝜙𝑘(𝑡), (3)

with constant coefficients 𝑎𝑘 = 𝑎𝑘(𝑛0, 𝑛) = 𝑣𝑘,𝑛0𝑣𝑘,𝑛 (for a given disorder
distribution) and phases 𝜙𝑘(𝑡) that are effectively random over time.

The equation above is the standard description for optical speckles.
Assuming that all 𝑎𝑘 are equal and the phases 𝜙𝑘 are i.i.d. random
variables, we know that as 𝑁 → ∞, the central limit theorem leads
to a joint circular Gaussian distribution for Re{𝜓} and Im{𝜓} centered
at the origin of the complex plane. As a consequence, the resultant
amplitude |𝜓| is Rayleigh distributed and the intensity 𝐼 = |𝜓|2 obeys
the exponential distribution

𝑝(𝐼) = 𝑠−1𝑒−𝐼∕𝑠, (4)

with 𝑠 = ⟨𝐼⟩. This outcome holds for any distribution associated
to 𝑎𝑘, as long as statistical independence between all variables is
satisfied [23].

3. Results

We are ready to investigate the speckle development associated
with the long-time dynamics of the Anderson model. Throughout the
analysis we fix the input site to 𝑛0 = 1 in Eqs. (2) and (3). A signature
of a fully developed speckle is when the speckle contrast 𝐶 = 𝜎𝐼∕⟨𝐼⟩
equals to unit (the exponential law applies for 𝐼 = |𝜓|2), where 𝜎𝐼 is the
standard deviation of the intensity. This is expected to be the case when
the disorder 𝑊 is weak, rendering amplitudes |𝑎𝑘| evenly distributed
for all practical purposes.

Fig. 1 displays the contrast evaluated at many distances from the
source 𝑛0 for various disorder strengths 𝑊 . We note that the increase
of the disorder drives the statistics towards a sub-exponential regime
(𝐶 < 1), especially at locations closer to the input site. This happens
due to the spatial distribution of 𝑎𝑘 = 𝑣𝑘,𝑛0𝑣𝑘,𝑛, with each 𝑣𝑘,𝑛 decaying
exponentially. As 𝑛 ≈ 𝑛0, the phasor sum is dominated by fewer
amplitudes.
2 
Fig. 1. Contrast 𝐶 = 𝜎𝐼∕⟨𝐼⟩ of the intensity 𝐼 = |𝜓|2 versus site 𝑛 averaged over 10
independent realizations of disorder. In each case, the time evolution is realized up
to 𝑡𝐽 = 105, allowing for fast statistical convergence of the speckle contrast. System
parameters are 𝑁 = 100, with 𝑊 ∕𝐽 = 0.1 (blue circles), 0.5 (red squares), 1 (yellow
diamonds), 1.5 (green up triangles), 2 (pink down triangles), and 3 (open black circles).
Numerical data were obtained via exact diagonalization of the Hamiltonian.

3.1. Rician-type distributions

To account for the sub-exponential statistics revealed by 𝐶 < 1 in
Fig. 1, we resort to compound Rician distributions as explained in the
following.

In the case of a constant strong phasor with intensity 𝐼0 interfering
with a weaker random phasor sum – following an exponential distribu-
tion with mean 𝑠𝑟 – the resulting intensity obeys the Rician distribution

𝑓 (𝐼) = 𝑠−1𝑟 𝑒−(𝐼∕𝑠𝑟+𝑟)0
(

2
√

𝐼𝑟∕𝑠𝑟
)

, (5)

where 0 is the zeroth-order modified Bessel function of the first kind.
This distribution is shaped by the ratio 𝑟 = 𝐼0∕𝑠𝑟 and becomes the
exponential distribution in the limit 𝑟 → 0. The contrast of a Rician
speckle is given by 𝐶(𝑟) = (1 + 2𝑟)1∕2∕(1 + 𝑟).

When localized modes are present, isolating a single dominant
phasor will not ensure that the remaining terms (noise) amount to
Rayleigh/exponential statistics. Instead, we may have to filter this noise
from the dominant part of size 𝜇. Hence, in general 𝐼0 forms a speckle
on its own and 𝑟 becomes a random variable distributed according to
𝜌(𝑟). Finally, the output intensity can be described by compounding the
Rician distribution with respect to 𝑟:

𝑝(𝐼) = ∫

∞

0
𝑑𝑟𝑓 (𝐼|𝑟)𝜌(𝑟), (6)

where 𝑓 (𝐼|𝑟) is the Rician distribution conditioned on knowledge about
𝑟.

In Fig. 2(a) we plot the intensity distribution for two distinct dis-
order strengths considering 𝑛 = 2 (right next to the input site). As
predicted, the sub-exponential statistics (red squares) is well described
by a compound Rician distribution. Therein, we picked 𝜇 = 4 largest
amplitudes |𝑎𝑘| to build 𝜌(𝑟). To justify this choice, in 2(b) we evaluate
the contrast 𝐶 of the remaining phasor sum for various partitions of
size 𝑁 − 𝜇. As 𝜇 increases, 𝐶 reaches a saturation level of 𝐶 ≈ 0.85 for
𝑊 = 4 J. This is related to the finite localization length of the modes
involved. Nevertheless, the noise can be effectively approximated as a
fully developed speckle. Note that as the modes become more localized
upon further increasing 𝑊 , then 𝑟 → ∞ rendering the random phasor
sum outside of the domain irrelevant. This is true for 1D and 2D
systems featuring uncorrelated diagonal disorder, where every mode is
exponentially localized. The situation is more involved when correlated
disorder is considered [25]. In the case of weak disorder [blue circles in
Fig. 2(a)], the distribution obeys the exponential law. Indeed, despite
the form of 𝜌(𝑟), if 𝑟 is vanishingly small the integral in Eq. (6) recovers
the exponential distribution.
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Fig. 2. (a) Probability density function of the intensity 𝐼 = |𝜓|2 evaluated at 𝑛 = 2
(with 𝑛0 = 1) for 𝑊 = 0.1 J (blue circles) and 𝑊 = 4 J (red squares). The statistics
is built from the exact numerical time evolution of a single realization of a periodic
chain with 𝑁 = 100 up to time 𝑡𝐽 = 106. The fittings (solid lines) are obtained by
compounding Rician distributions as in Eq. (6). The distribution for 𝑟 = 𝐼0∕𝑠𝑟, 𝜌(𝑟),
was defined by setting aside 𝜇 = 4 dominant amplitudes |𝑎𝑘| from the random phasor
sum. Note that for weak disorder the exponential distribution (the limit 𝑟 → 0 of the
Rician distribution) is recovered. (b) Contrast 𝐶 of phasor sum formed by the remaining
𝑁−𝜇 components versus disorder strength 𝑊 for various 𝜇 (null 𝜇 means no filter). The
contrast here is evaluated through random generation of the phases 𝜙𝑘 in an ensemble
of 1000 resultant intensities and later averaged over 200 realizations of the disorder.

The takeaway message from the analysis above is that the likelihood
of extreme events is less than predicted by exponential statistics when
measurements are taken closer to a delta-like source, especially for
stronger levels of the disorder.

3.2. Long-tailed distributions

So far we have been dealing with the intensity statistics 𝑝(𝐼) built
over the time series of 𝐼 = 𝐼(𝑛, 𝑡) = |𝜓(𝑛, 𝑡)|2 for single disorder realiza-
tions. Given a fixed set of coefficients 𝑎𝑘 associated to random phases
𝜙𝑘 covering the whole circle (due to the truncated time evolution of
the system) we could treat 𝐼(𝑛, 𝑡) as a local stochastic process.

We now move on to consider cases in which 𝐼 is evaluated at a
fixed (long) time and the statistics is performed over various disorder
configurations and/or sites 𝑛. In these cases, we cannot be sure whether
the mean intensity 𝑠 = 𝑠(𝑛) will hold for independent disorder realiza-
tions with the same 𝑊 . We henceforth discuss how this uncertainty
gives rise to heavy-tailed statistics that describes speckles beyond the
3 
Fig. 3. Probability density function of the intensity 𝐼 = |𝜓|2 evaluated at 𝑛 = 50 and
𝑡𝐽 = 5000 (now fixed). Data is obtained from 104 independent realizations of disorder
considering 𝑁 = 100 sites. Disorder strengths are 𝑊 = 0.1 J (blue circles) and 𝑊 = 2 J
(red squares). The exponential fitting is represented by the blue dashed line. The heavy
tailed curves are 𝐾-distributions given by Eq. (9) with 𝑀 = 3 (black solid line) and
𝑀 = 1 (red dotted line) . The 𝐾-distribution approaches the exponential distribution
as 𝑀 → ∞.

Fig. 4. Distribution 𝑔(𝑠) of the mean intensities 𝑠 = ⟨𝐼⟩ at 𝑛 = 50 and 𝑡𝐽 = 5000
averaged over 30 independent outputs of an ensemble of 3000 independent realizations
of disorder and 𝑁 = 100. Disorder strengths are (a) 𝑊 = 0.1 J and (b) 𝑊 = 2 J.
Blue-solid and red-dashed lines are fittings obtained from the Erlang function [Eq. (8)]
with 𝑀 = 30 and 𝑀 = 10, respectively.

exponential regime. For convenience, we assume that a given intensity
measurement is a random variable originated from an exponentially-
distributed process 𝐼(𝑛, 𝑡). Again, this is valid when the disorder is weak
and/or 𝑛 is not very close to 𝑛0.

Next, we follow the approach outlined in [15], which describes
linear rogue waves observed in microwave transport through disor-
dered scatterers. We begin by defining the intensity distribution as the
average of the conditional density function 𝑝(𝐼|𝑠) = 𝑠−1𝑒−𝐼∕𝑠 over the
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distribution of the mean intensity 𝑔(𝑠):

𝑝(𝐼) = ∫

∞

0
𝑑𝑠 𝑝(𝐼|𝑠)𝑔(𝑠), (7)

where a specific form for 𝑔(𝑠) should therefore be in order.
The resulting distribution of a sum of random variables is the con-

volutions of the individual parts. In the case of a sum of 𝑀 independent
exponentially-distributed random variables 𝑋𝑖, each with associated
mean 𝑠𝑖, a hypoexponential distribution with 𝑀 parameters 𝑠−1𝑖 is
obtained. But here we take a simpler route and consider equal 𝑠𝑖 = 𝑠0.
(The validity of such an approximation will be discussed shortly.) In
this case the resulting distribution is an Erlang density function with
shape and scale parameters 𝑀 and 𝑀∕𝑠0, respectively:

𝑔(𝑠) =
𝑀𝑀 ( 𝑠𝑠0

)𝑀−1𝑒−𝑀𝑠∕𝑠0

𝑠0𝛤 (𝑀)
, (8)

where 𝛤 (𝑀) = (𝑀 − 1)!. This function is a special case of the gamma
density function where 𝑀 is a positive integer. Also note that it
converges to a delta function as 𝑀 increases (as expected given a well
defined mean intensity 𝑠0 is implied).

Plugging Eq. (8) back into Eq. (7), the integral can be solved as

𝑝(𝐼) = 2𝑀
𝑀+1
2

𝑠0𝛤 (𝑀)

(

𝐼
𝑠0

)
𝑀−1
2
𝐾𝑀−1

(

2
√

𝑀𝐼
𝑠0

)

, (9)

where 𝐾𝑀 is the modified Bessel function of the second kind of order
𝑀 . The above equation is known as the 𝐾-distribution and is commonly
used to describe radiation scattering. Note that a very large 𝑀 reduces
it to 𝑝(𝐼) = 𝑠−10 𝑒−𝐼∕𝑠0 as 𝑔(𝑠) → 𝛿(𝑠 − 𝑠0). In other words, a large
number of measurements should increasingly provide knowledge over
𝑠0. Physically, it makes sense if there is indeed a well defined 𝑠0 so as to
justify the approximation that led us to Eq. (8). This happens to be the
case when weak disorder is considered, as shown in Fig. 3 (dashed blue
curve) for 𝑛 = 50 (far away from 𝑛0 = 1), where the exponential distri-
bution remains valid. Considering the same parameters, in Fig. 4(a) we
confirm that the Erlang distribution 𝑔(𝑠) fits well to the numerical data
made up of thousands of independent averages realized over sets of
𝑀 = 30 distinct samples. Such a value for the shape parameter renders
a distribution barely distinguishable from an exponential one.

On the other hand, strong disorder inevitably yields to heavy-tailed
statistics as seen in Fig. 3 (red squares). Now, Eq. (9) fits well with
the numerical data (red squares) as long as 𝑀 is set to lower values
in order to compensate for the non-homogeneity of 𝑠𝑖. At first, we may
assume complete ignorance and choose 𝑀 = 1, which gives 𝑔(𝑠) ∼ 𝑒−𝑠,
to get the longest tail (see red dotted curve in Fig. 3). As this might
overestimate the onset of extreme outcomes, a more careful analysis
can be made by looking directly at 𝑔(𝑠). In Fig. 4(b) we note that, for
example, 𝑀 = 30 fails to account for the extreme averages [not as rare
as in Fig. 4(a)]. We can reach out for those values by decreasing 𝑀 ,
with the small price of deviating from the regular events.

To gain a better perspective on how the speckle fluctuations build
up with the disorder, in Fig. 5 we display 𝐶 versus 𝑊 at various
locations 𝑛. Note that when 𝑛 = 2 (closer to the input), the statistics
remains close to an exponential (𝐶 ≈ 1) for the whole range of
𝑊 . Hence, we see that the Rician-type distribution followed by 𝐼
is robust against disorder fluctuations. As both 𝑊 and 𝑛 increase,
speckle fluctuations become more pronounced, resulting in 𝐶 > 1.
The K-distribution can then be chosen provided 𝐶(𝑀) =

√

(𝑀 + 2)∕𝑀 ,
especially in the low disorder range such that 𝐼(𝑡) can be approximated
as an exponentially-distributed random process.

We now obtain the statistics for the whole chain at once. Now, in
addition to not knowing the rate of the exponential processes (or Rice-
type processes for 𝑛 close enough to the input) occurring locally, we
are also not certain about the distance between the input and output
locations, 𝑛 and 𝑛0, respectively. In Fig. 6 we compare results obtained
for weak (𝑊 = 0.1 J) and intermediate (𝑊 = 1 J) disorder strengths
and confirm a departure from the exponential regime in the latter case.
4 
Fig. 5. Contrast 𝐶 versus disorder strength 𝑊 at fixed time 𝑡𝐽 = 106 and locations 𝑛
as indicated. The number of independent disorder realizations was 104 for 𝑁 = 50.

Fig. 6. Probability density function of the intensity 𝐼 = |𝜓|2 evaluated for all 𝑛 over
a chain with 𝑁 = 50 sites at time 𝑡𝐽 = 5000 for 105 independent realizations of the
disorder, with 𝑊 = 0.1 J (blue circles) and 𝑊 = 1 J (red squares). The blue-dashed-
and red solid lines represent the exponential distribution ∼ 𝑒−𝐼 and the 𝐾-distribution
with 𝑀 = 5, respectively.

The same reasoning used to justify the 𝐾-distribution in Eq. (9) can be
employed to include both disorder realizations and positions 𝑛 if we
ignore that sites closer the input obey Rician-type statistics. Once again,
the resulting heavy-tailed profile is well described by the 𝐾-distribution
as long as we cope with our lack of knowledge by keeping 𝑀 low
enough.

To summarize the findings above, we conclude that heavy-tailed
statistics emerge whenever 𝑔(𝑠) cannot approach a delta function in the
limit of large 𝑀 .

3.3. Rogue wave events

In this last section, we discuss how the speckle statistics discussed
so far is related to the occurrence of rogue waves. First, we mention
that any criterion for deciding what is a rogue wave and what is not
will always be arbitrary to some extent. Some authors define the rogue
wave threshold 𝐼 as two times the mean the largest 1/3 of events
RW
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Fig. 7. (a) Single (typical) realization of the intensity time evolution for 𝑁 = 50,
= 2, 𝑊 = 0.1 J, up to 𝑡𝐽 = 106 divided into 103 steps. The horizontal line stands

or the rogue-wave threshold 𝐼RW = ⟨𝐼⟩ + 4𝜎𝐼 , defined for the corresponding wave
record. (b) Number of rogue wave events versus disorder strength 𝑊 considering 𝑛 = 2
(filled symbols), 𝑛 = 20 (empty symbols). The circles represent the average number of
rogue events recorded over time for an individual disorder realizations [such as the
one depicted in (a)]. The diamonds cover the statistics resulting from an ensemble of
5×104 disorder realizations with the intensities evaluated at a fixed time 𝑡𝐽 = 106. The
thresholds 𝐼RW were set accordingly.

within a dataset (known as the significant wave height) [21,22,25,29].
Others define it as any wave event that exceeds the average by a given
amount of standard deviations [4,30]. Here, we will use the latter by
setting 𝐼RW = ⟨𝐼⟩ + 4𝜎𝐼 = (1 + 4𝐶)⟨𝐼⟩, in terms of the speckle contrast.

Fig. 7(a) shows a typical realization of a temporal evolution resem-
bling a speckle pattern. The few intensities (out of 1000) that crosses
the horizontal line given by 𝐼RW are classified as rogue wave events. In
Fig. 7(b) we display the percentage of those in various cases. When the
wave record is based on individual realizations of the disorder (circles),
the rate of rogue wave events diminishes upon increasing 𝑊 , especially
when the probe is right next to the input location (filled circles). As
addressed earlier, this is a consequence of the localization of the modes
involved, what effectively reduces the speckle fluctuations, favoring
Rician statistics. When the intensities are recorded from an ensemble
of disorder realizations at a fixed point in space and time, the rate of
rogue events measured next to the input displays no definite trend with
increasing 𝑊 . Contrarily, if the probe location is far, the occurrence
of rogue waves becomes less likely. Interestingly, this happens despite
the increase of the speckle contrast 𝐶 with 𝑊 as shown in Fig. 5 for
𝑛 > 2. Nevertheless, we must recall that 𝐼RW = 𝐼RW(𝐶) and thus long-
tailed distributions (𝐶 > 1) will typically feature higher rogue-wave
thresholds as well, making them more difficult to occur. By the same
argument, we can understand why the likelihood of rogue wave events
based on an ensemble of disorder realizations does not change with
𝑊 for 𝑛 = 2 in Fig. 7 (filled diamonds). There is a balance between
disorder-induced fluctuations in the random variable 𝐼 and its own
sub-exponential speckle statistics (cf. Fig. 5).

4. Conclusions

A parallel between random phasor sums employed to describe op-
tical speckles and the Hamiltonian dynamics of an Anderson chain
has been put forward. We found that the intensity statistics evaluated
closest to the input site 𝑛0 deviates from the exponential law towards
a Rician-type distribution as disorder grows, thereby diminishing the
number of rogue wave events. But we have also seen that the speckle
statistics ultimately depends on how the data is arranged. When distinct
disorder realizations are considered at once, 𝐾-distributed speckles
result from compounding exponential distributions with different rates.
In this case, the opposite happens: rogue waves are more likely to occur
at sites closer to 𝑛0. The reason for this is that higher speckle contrasts
results in higher rogue-wave thresholds 𝐼RW making occurrences rarer
at 𝑛 ≫ 𝑛 .
0

5 
Our findings can be readily realized using, e.g., coupled photonic
waveguides [21,31–33] or chains of LC contours with fluctuating reso-
nant frequencies [34], where direct mappings onto tight-binding Hamil-
tonians are in order.

For instance, in Ref. [21], Rivas et al. observed rogue waves arising
from single-site excitations in photonic lattices (of size 𝑁 = 81) written
with femtosecond lasers. By means of the natural evolution of the sys-
tem, they were able to record rogue waves by counting the intensities
across the sites (which naturally results in a long-tailed distribution) for
a given disorder realization. The authors also highlighted that rogue-
wave statistics is highly influenced by the kind of wave record or
filtering. Despite their experiment being limited to short distances (time
steps in our case) and disorder samples, some remarkable conclusions
could be drawn, including that weak disorder is ideal for observing
rogue waves. Here, in Fig. 7(a) we have discussed this behavior in
detail from the perspective of two kinds of wave records: over a single
disorder realization and over an ensemble of such realizations. With
that, we could also draw attention to the counter-intuitive behavior
of the rogue wave statistics against 𝑊 . Finally, we mention that our
findings could be realized in much shorter time spans. Our typical
maximum time was chosen out of numerical convenience, allowing for
fast statistical convergence of the speckle contrast 𝐶. In a practical re-
alization, limitations due to the maximum time or propagation distance
can be addressed by considering alternative input configurations.

Possible extensions of this work include investigating the influence
correlated disorder [25] and initial conditions featuring modulated
phases [35], factors known to have dramatic influence in the occur-
rence of rogue events. Note that initial states in superposition renders
a sum over random phasor sums which generally does not yield to a
fully developed speckle regime [25]. The possibilities are thus set to
uncover novel features in the dynamics of disordered quantum systems
through the lens of heavy-tailed phenomena.
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