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Abstract

We explore a disordered ladder system as a potential platform for the transmission of a single qubit. The
quantum channel consists of two coupled one-dimensional chains, with homogeneous intra- and interchain
hoppings. We introduce diagonal cross-correlated disorder into the ladder by assigning opposite binary
distributions across each leg. By adding two sites, one at each end of the ladder, we explore the conditions
under which high-fidelity quantum state transfer can occur. A finite-size analysis shows that the cross-
correlation is capable of maintaining good transfer fidelities even amid the presence of moderate disorder.
Our findings contribute to the design of quasi-1D quantum channels prone to static parameter fluctuations
for quantum communication devices.

1. Introduction

Achieving high-fidelity quantum state transfer (QST) and entanglement distribution are crucial goals
for the development of quantum networks [1, 2]. Along this line of research, the transmission of an ar-
bitrary qubit between distant parts of lattice systems has been widely studied since Bose’s proposal [3]
of harnessing the natural time evolution of spin chains for coherent excitation transport. Since then, nu-
merous tight-binding models have been proposed, with distinct capabilities. Perfect QST, for instance,
can be achieved upon judicious tuning of all the couplings across a one-dimensional chain [4, 5]. Another
class of configuration, which delivers nearly-unit QST fidelities, employs optimized couplings only at the
ends of the chain [6, 7]. At the weak-coupling limit [8], the dynamics effectively takes place on two-level
or three-level [9] subspaces depending on the resonance conditions between the end sites and the channel.
This configuration is particularly robust to static disorder in the parameters of the Hamiltonian [10, 11].
We also mention approaches based on the local application of strong magnetic fields [12], tailored inputs
[13, 14], topological edge states [15, 16], flat bands [17], and others (reviews on the subject can be found
in Refs. [18, 19, 20]). Various studies have also addressed the effects of noise in those protocols, including
static parameter fluctuations [21, 22, 23, 24, 25, 26, 10, 27, 28, 29, 30, 31, 32, 33, 34, 35] and environmental
decoherence [36, 37, 38]. In reality, achieving high-fidelity QST is challenging, as it requires systems that
not only maintain coherence but also scale efficiently. Finding the right balance between size, transfer time,
and fidelity has driven innovative research in QST across those engineering schemes.

Prototype QST Hamiltonians based on spin-1/2 chains have predominantly been one-dimensional. The
relatively simple geometry, combined with the natural connectivity and inherent quantum correlations offered
by spin chains, makes them promising platforms for exploring fundamental aspects of quantum transport.
However, there remains much to explore if we allow ourselves to look beyond one-dimensional systems [17].
In this sense, ladder models have been a compelling framework for studying quantum transport phenomena
[39, 40, 41, 42]. They provide an intermediate level of complexity that bridges the gap between linear
chains and two-dimensional systems. A simple ladder system is composed of two coupled one-dimensional
chains, enabling us to explore the rich dynamics arising from the interplay between intra- and interchain
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Figure 1: Schematic representation of the ladder model with K = 8. Solid edges correspond to the coupling strength J and
the dotted ones at both ends of the upper leg denotes g, which couples the left (L) and right (R) communicating sites to the
channel. Both are assigned a tunable local energy E0. Dark and bright colors filling the nodes of the ladder indicate the binary
distribution of the on-site disorder ±W . The cross correlation is set by defining the on-site energies of one leg with the opposite
sign with respect to the other.

interactions. For example, two-leg models can display metal-insulator transition with well defined mobility
edges [43]. Certain correlations rotted on local constant proportions between the on-site potentials and
interchain coupling strengths can also yield a band of delocalized states that coexists with strongly localized
ones [44, 45]. In Ref. [40], a ladder spin-1/2 chain with such a correlated disorder was investigated in an
entanglement transfer protocol. Notably, it was shown that increasing the disorder strength led to a higher
transfer fidelity, which was measured by the concurrence. Furthermore, the involved transport properties of
DNA molecules are often modeled by two-leg ladders with cross correlations in the potentials [46, 47].

Inspired by this, we investigate the effect of diagonal cross-correlated disorder on quantum state transfer
in ladder systems. The communicating sites are weakly coupled to the ladder as shown in Fig. 1, a
configuration proposed in Ref. [39]. In this work, however, we introduce the disorder by assigning a binary
series to the on-site energies to one leg, with the other leg taking the opposite values. We will see that
this type of correlation positively impacts the dynamics of the system in the context of QST due to the
weakening of localization within certain energy ranges. From another point of view, the figure of merit of
the QST protocol can also be used to measure the localization properties of the disordered ladder.

2. Model

Let us consider an isotropic XY (or, simply, XX) spin−1/2 chain expressed in terms of non-interacting
spinless fermions (Jordan-Wigner transformation). The topology of the channel under consideration consists
of two parallel chains, referred to as the upper and lower legs, each of length K. Both intra- and interchain
couplings are given by J and form a ladder-like structure. At the upper leg, two extra sites, namely L
and R are weakly coupled to it via g � J [8, 39], hence the total number of sites is N = 2K + 2. The
configuration is displayed in Fig. 1. (For all practical purposes, our findings would not differ quantitatively
if, for example, site R were coupled to the lower leg.) The Hamiltonian reads

H =

K−1∑
i=1

J
(
u†iui+1 + d†idi+1 + h.c.

)
+

K∑
i=1

J
(
u†idi + h.c.

)
+ g(u†Lu1 + u†RuK + h.c.) +

K∑
i=1

εi

(
u†iui − d

†
idi

)
+ E0

(
u†LuL + u†RuR

)
, (1)

where u†i and d†i are fermionic creation operators at site i for the upper and lower legs, respectively. The
local energy of the external sites is given by E0, whereas those in the ladder are set by εi, to which we assign
two possible values: +W or −W , with equal probability, where W is a tunable parameter that controls the
intensity of the disorder, which can be adjusted to explore different disorder regimes within the system. The

cross correlation is already imposed by the term
∑K

i=1 εi

(
u†iui − d

†
idi

)
in Eq. (1) due to the opposite signs.

It means that when a site in the upper leg is assigned the energy +W , the corresponding site in the other
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Figure 2: Normalized density of states (DOS) versus eigenenergies E of the ladder alone for the disorder strengths (a) W = 0.25
and (b) W = 0.5 comparing the correlated (solid curves) and uncorrelated (dotted curves) cases. The size of the ladder is
K = 2000 and shown is the averaged DOS over 500 realizations of the disorder.

leg will be assigned the energy −W , and vice versa. The intra- and interchain couplings J will remain fixed
throughout our discussion and thus we set J ≡ 1 as the standard energy unit.

The standard protocol for transmitting a single qubit in a XX spin−1/2 chain goes as follows (see
[3, 19] for details). The whole system is initialized in the ferromagnetic ground state (all spins down)
|ground〉 = | ↓〉L| ⇓〉ladder| ↓〉R. Then, the sender prepares its spin located in L in an arbitrary superposition
of the form |ψ〉L = α| ↓〉L + β| ↑〉L (α and β being complex amplitudes) such that the full input state reads
|ψ〉L| ⇓〉ladder| ↓〉R. The goal is to recover the input state at the receiver’s site (R) at a prescribed time.
Given the system Hamiltonian preserves the total number of excitations, we only need to keep track of the
dynamics occurring in the single-excitation subspace. Indeed, a proper figure of merit of the QST protocol
can be cast as a monotonic function of the transition amplitude fR(t) = 〈ground|uRU(t)u†L|ground〉, where
U(t) = e−iHt (~ ≡ 1) is the quantum time evolution operator. The so-called averaged fidelity (averaged
over the whole Bloch sphere pertaining to the input state) reads [3]

F (t) =
1

2
+
|fR(t)|

3
+
|fR(t)|2

6
. (2)

We emphasize that this quantity ranges from F = 1/2 to F = 1 (indicating perfect transfer). The threshold
for the classical transmission of a quantum state is F = 2/3; thus a fidelity above this level justifies the
functionality of the quantum channel.

The mechanism behind weakly-coupled QST schemes is the occurrence of Rabi oscillations involving the
sites L and R. These are mediated by the channel modes [8, 9, 48], with the degree of population transfer
depending on their localization properties [11]. If the energy of the weakly-coupled parties, E0, meets a
spectral region dominated by delocalized states, then greater is the capability of the channel to mediate the
transfer, and even generate entanglement [11, 33]. The typical timescale of the effective Rabi dynamics is
∝ g−2 [8, 48]. Here, the minimum value of g we will consider is of the order of 10−2. Considering that
we are dealing with disordered samples, the overall performance of the protocol will be the assessed by the
maximum fidelity Fmax obtained over a time window t ∈ [0, τ ], with τ ∼ 105, which ensures that the system
has evolved long enough in the sense of transmitting the excitation from one end to the other.
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Figure 3: Fmax as a function of the local energy E0 of the communicating sites for disorder strengths (a) W = 0.5 and (b)
W = 1. The weak coupling is fixed to g = 0.025, N = 102, and Fmax is averaged over 1000 independent realizations of the
disorder. Two transfer windows are observed around E0 ≈ ±2.5. These regions indicate the presence of delocalized modes
within the channel.

3. Results

Our results are presented below. We would like stress that the computational approach we use to
evaluate the quantum time evolution operator relies solely on the exact diagonalization of the Hamiltonian
[Eq. (1)] in the single-excitation subspace. This method guarantees the accurate temporal evolution of the
wave packet over long times without any degradation of the wave function’s norm. The time evolution is
computed in discrete time steps of size ∆t. In our analysis, we explored a range of those, from relatively small
values (∆t < 1) to larger ones (∆t ≈ 200). Given the typical timescale of the Rabi dynamics that governs
the QST, the obtained maximum fidelities (averaged over an ensemble of disorder realizations) remained
consistent both qualitatively and quantitatively across that range. Consequently, most of our simulations
were performed using ∆t ≈ 200 to optimize computational efficiency without compromising accuracy.

Before presenting the results for the QST itself, however, let us first have a rapid look into the spectral
properties of the ladder channel (without sites L and R). In Fig. 2 we show the density of states (DOS)
versus the channel’s eigenenergies E for two different disorder strengths, W = 0.25 and W = 0.5. The DOS
was obtained by building a histogram of the eigenvalues of the Hamiltonian, which were computed through
exact diagonalization. The eigenvalues were grouped into bins of fixed width, and their count within each bin
was divided by both the total number of modes and the bin width. This procedure ensures that the DOS is
normalized, such that the integral of the DOS over the entire energy range equals one, allowing for a proper
probabilistic interpretation of the energy distribution. In the figure we compare these results with those
obtained from a similar model where the disorder is implemented by uncorrelated binary distributions along
each leg. The results show that the structure of the allowed energy bands remains qualitatively unchanged.
This suggests that, apart from the weakening of the expected singularities at the band edges, the disorder
does not significantly alter the overall distribution of the energy spectrum in the model. Yet, we are about
to see that the correlation is responsible for improving the QST quality significantly.

Now, in Fig. 3 we present the ensemble-averaged Fmax as a function of tuning energy of the outermost
sites L and R, E0, for two disorder strengths, W = 0.5 and W = 1. In the correlated case, both panels
reveal the existence of two distinct transfer windows, centered around E ≈ 2.5. These windows have an
approximate width of ∆E ≈ 0.2, which appears to decrease as the disorder strength W increases. Those
transfer windows correspond to regions where the fidelity of the QST is maximized (greater than the classical
threshold of 2/3), indicating that delocalized states are present in the range [11]. In contrast, outside these
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Figure 4: Probability distribution of Fmax for different disorder strengths W and local energies: (a) E0 = −0.2, (b) E0 = −2.0,
and (c) E0 = −2.0 but for the uncorrelated case. Fixed system parameters are N = 102 and g = 0.025. Each histogram
is generated 1000 independent disordered samples. A comparison between panels (b) and (c) highlights the importance of
disorder correlations for enabling a high-fidelity QST protocol.

windows, particularly at the extremes of the band and near the center of the band, the fidelity dramatically
drops. This is clear signature that the underlying two-level (Rabi) dynamics between sites L and R is highly
out of resonance. For comparison, in Fig. 3 we include the corresponding results for the uncorrelated case We
observe that the fidelity is significantly lower than in the case with cross-correlated disorder, underscoring
the important role of the disorder correlations in enhancing QST quality.

To further address the importance of picking the right tuning energy E0, Fig. 4 depicts the probability
distribution of Fmax for two tuning energies, E0 = −0.2 and E0 = −2.0, each standing for distinct transfer
qualities. Figures 4(a) and 4(b) display the results for the correlated case. For E0 = −0.2 [4(a)], we see
that even in the weak disorder regime (W = 0.5), the distribution bends toward Fmax = 1/2. As W
increases, this trend becomes even more pronounced, ultimately suppressing the QST. These findings imply
that the channel modes are strongly localized at energies close to E0, despite the presence of correlations
in the disorder. For E0 = −2.0 [4(b)], on the other hand, a strikingly different behavior is observed. For
disorder strengths up to intermediate values, W ≤ 1, chances are high that fidelities above 0.95 are obtained.
Comparing those histograms with the corresponding uncorrelated case [4(c)], with the same parameters, we
once again highlight the role of the cross correlations in boosting the QST performance.

Now, we explore the role of the weak coupling parameter g. As already mentioned, in the perturbative
limit the QST timescale scales as g−2. Hence, there must be a tradeoff between QST speed and fidelity
[8, 48]. In Fig. 5(a), Fmax is evaluated against g for E0 = 2.5, which is a proper tuning energy for the
protocol (cf. Fig. 3). We note that Fmax decreases almost linearly with g, up to g = 0.225 (starting
from 0.01), and yet the fidelities are maintained above the classical threshold of 2/3 for all values of W
considered. Overall, the decrease in QST quality in this case should be understood not in terms of the
localization properties of the channel modes around E ≈ E0. Rather, as g increases the effective two-level
dynamics ceases to exist [9], with the single excitation states associated to sites L and R becoming more
mixed with the ladder modes. The dynamics thus becomes more dispersive while the transport properties of
the ladder alone remain the same, as the parameters of the bulk have not changed. While out of the scope
of the present work, it is worth mentioning that in homogeneous one-dimensional models, a kind of ballistic
regime can be achieved at optimal (not perturbative) values of g, yielding a fast QST with high fidelities
[7]. Therefore, models with tunable couplings at the boundaries offer a versatile plataform for designing
quantum communication schemes.

Another parameter that affects the QST performance is the system size N . Figure 5(b) displays Fmax)
as N grows. In this case, more ladder modes fill in the region surrounding E ≈ E0. As a consequence, if
the perturbative regime g � J is to be maintained, g must be decreased even further. In Ref. [8], it is
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Figure 5: (a) Fmax as a function of g for E0 = 2.5, N = 102, and various disorder strengths W . (b) Fmax as a function of
system size N (from N = 102 to N = 442) for fixed g = 0.025 and E0 = 2.5. All the curves represent Fmax averaged over 1000
independent realizations of the disorder.
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Figure 6: Figure 6 shows FM as a function of W , where FM represents the maximum average fidelity within the band of
allowed states. In the correlated disorder case, FM remains above 0.9 for disorder (W . 0.7) and decreases gradually in the
intermediate-to-strong disorder regime . In contrast, in the uncorrelated case, FM exceeds 0.9 only for very weak disorder
(W . 0.2) and decays sharply for W > 0.2, reaching values close to 0.5. This highlights the role of cross-correlations in
maintaining high fidelity even in the intermediate disorder regime.

reported that g � 1/
√
N so as to keep the fidelity close to unit in homogeneous chains. Even though our

system possesses a distinct geometry and is embedded with correlated disorder, the condition holds. We
point out that a distinct behavior is observed when considering topological lattices, such as those providing
topologically protected edges states separated by a gap, which does not close upon increasing N [15]. We
also note in Fig. 5(b) that the fidelity decays more rapidly with N as W becomes higher. This indicates
that, in addition to the influence of an effectively larger g explained above, the localization strength of the
channel modes becomes more pronounced channel modes builds up more robustly as finite-size effects are
minimized.

Before finishing our work, we will discuss some calculations presented in Figure 6, which shows FM as
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a function of W . The quantity FM represents the maximum value of the average fidelity within the band
of allowed states. Specifically, we compute the average fidelity within the band (considering initial state
energies E0 between −3.5 and 3.5) and identify its highest value within this range, which we denote as FM .
We then plot FM as a function of W , considering both correlated and uncorrelated disorder cases. In the
correlated case, for weak disorder (W = 0.1 to approximately W = 0.7), FM remains close to 1 (above 0.9).
For W > 0.7, the maximum fidelity in the band (FM ) decreases further, reaching values close to 0.8 when
the disorder strength becomes comparable to the mean hopping term (i.e., W around 1 or slightly higher).
This corresponds to an intermediate-to-strong disorder regime. On the other hand, in the uncorrelated
case, FM exceeds 0.9 only in the very weak disorder regime (W = 0.1 or W = 0.2). For W > 0.2, FM

starts to decay much more sharply compared to the correlated case, eventually reaching values close to the
minimum 0.5. This figure clearly demonstrates that cross-correlations can sustain fidelity close to 1 even in
the intermediate disorder regime. In contrast, in the absence of correlations, the system becomes ineffective
for quantum state transfer when the disorder reaches a level comparable to the hopping energy.

4. Conclusion

In this work, we investigated quantum state transfer (QST) in a disordered ladder system with cross-
correlated on-site disorder. The channel topology consists of two parallel chains, referred to as the upper
and lower legs, each of length K. Both intra- and interchain couplings are given by J , forming a ladder-like
structure. In the upper leg, two additional sites, labeled L and R, are weakly coupled to the system via
g � J , bringing the total number of sites to N = 2K+2. The system is modeled as an isotropic XX spin- 12
chain, which can be mapped onto a system of spinless fermions via the Jordan-Wigner transformation. We
examined how disorder and coupling parameters influence the efficiency of state transmission within this
framework. Our results indicate that cross-correlations within the channel play a crucial role in achieving
high transfer fidelities, particularly by tuning the local energy E0 of the communicating sites. Using exact
diagonalization techniques, we analyzed the spectral properties of the ladder system and identified transfer
windows where QST is feasible. Despite the tendency of disorder to induce localization, we found that
the cross-correlated structure alters the spectral characteristics in a way that enables efficient transmission.
Additionally, our computational analysis demonstrated that the obtained fidelities remain robust across a
broad range of time step sizes, ensuring the reliability of our numerical simulations. Our findings provide
deeper insight into how correlated disorder influences transport properties in quantum systems and could
have practical implications for quantum communication in engineered spin chains. Future research could
explore alternative disorder correlations, nonreciprocal configurations, or interaction effects to further refine
the understanding of quantum transport in complex disordered systems.
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[26] A. Zwick, G. A. Álvarez, J. Stolze, O. Osenda, Spin chains for robust state transfer: Modified boundary couplings versus
completely engineered chains, Phys. Rev. A 85 (2012) 012318. doi:10.1103/PhysRevA.85.012318.
URL http://link.aps.org/doi/10.1103/PhysRevA.85.012318

[27] M. Bruderer, K. Franke, S. Ragg, W. Belzig, D. Obreschkow, Exploiting boundary states of imperfect spin chains for
high-fidelity state transfer, Phys. Rev. A 85 (2012) 022312. doi:10.1103/PhysRevA.85.022312.
URL https://link.aps.org/doi/10.1103/PhysRevA.85.022312

[28] S. Ashhab, Quantum state transfer in a disordered one-dimensional lattice, Phys. Rev. A 92 (2015) 062305. doi:10.1103/
PhysRevA.92.062305.
URL https://link.aps.org/doi/10.1103/PhysRevA.92.062305

[29] A. Kay, Quantum error correction for state transfer in noisy spin chains, Phys. Rev. A 93 (2016) 042320. doi:10.1103/

PhysRevA.93.042320.
URL https://link.aps.org/doi/10.1103/PhysRevA.93.042320

[30] M. P. Estarellas, I. D’Amico, T. P. Spiller, Robust quantum entanglement generation and generation-plus-storage protocols

8

https://link.aps.org/doi/10.1103/PhysRevA.82.052321
https://link.aps.org/doi/10.1103/PhysRevA.82.052321
https://doi.org/10.1103/PhysRevA.82.052321
https://link.aps.org/doi/10.1103/PhysRevA.82.052321
http://link.aps.org/doi/10.1103/PhysRevA.85.052319
http://link.aps.org/doi/10.1103/PhysRevA.85.052319
https://doi.org/10.1103/PhysRevA.85.052319
http://link.aps.org/doi/10.1103/PhysRevA.85.052319
http://link.aps.org/doi/10.1103/PhysRevA.72.034303
http://link.aps.org/doi/10.1103/PhysRevA.72.034303
https://doi.org/10.1103/PhysRevA.72.034303
http://link.aps.org/doi/10.1103/PhysRevA.72.034303
https://link.aps.org/doi/10.1103/PhysRevA.75.022330
https://doi.org/10.1103/PhysRevA.75.022330
https://link.aps.org/doi/10.1103/PhysRevA.75.022330
http://link.aps.org/doi/10.1103/PhysRevA.87.042313
http://link.aps.org/doi/10.1103/PhysRevA.87.042313
https://doi.org/10.1103/PhysRevA.87.042313
http://link.aps.org/doi/10.1103/PhysRevA.87.042313
https://doi.org/10.1088/1367-2630/7/1/135
https://link.aps.org/doi/10.1103/PhysRevA.72.062326
https://doi.org/10.1103/PhysRevA.72.062326
https://link.aps.org/doi/10.1103/PhysRevA.72.062326
https://link.aps.org/doi/10.1103/PhysRevA.93.032310
https://link.aps.org/doi/10.1103/PhysRevA.93.032310
https://doi.org/10.1103/PhysRevA.93.032310
https://link.aps.org/doi/10.1103/PhysRevA.93.032310
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201800090
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201800090
https://doi.org/https://doi.org/10.1002/qute.201800090
https://doi.org/https://doi.org/10.1002/qute.201800090
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201800090
https://link.aps.org/doi/10.1103/PhysRevA.108.022407
https://link.aps.org/doi/10.1103/PhysRevA.108.022407
https://doi.org/10.1103/PhysRevA.108.022407
https://link.aps.org/doi/10.1103/PhysRevA.108.022407
https://link.aps.org/doi/10.1103/PhysRevA.72.012323
https://doi.org/10.1103/PhysRevA.72.012323
https://link.aps.org/doi/10.1103/PhysRevA.72.012323
https://link.aps.org/doi/10.1103/PhysRevA.72.050301
https://doi.org/10.1103/PhysRevA.72.050301
https://link.aps.org/doi/10.1103/PhysRevA.72.050301
http://stacks.iop.org/1367-2630/9/i=3/a=079
http://stacks.iop.org/1367-2630/9/i=3/a=079
http://stacks.iop.org/1367-2630/9/i=3/a=079
http://link.aps.org/doi/10.1103/PhysRevLett.106.040505
http://link.aps.org/doi/10.1103/PhysRevLett.106.040505
https://doi.org/10.1103/PhysRevLett.106.040505
http://link.aps.org/doi/10.1103/PhysRevLett.106.040505
http://link.aps.org/doi/10.1103/PhysRevA.85.012318
http://link.aps.org/doi/10.1103/PhysRevA.85.012318
https://doi.org/10.1103/PhysRevA.85.012318
http://link.aps.org/doi/10.1103/PhysRevA.85.012318
https://link.aps.org/doi/10.1103/PhysRevA.85.022312
https://link.aps.org/doi/10.1103/PhysRevA.85.022312
https://doi.org/10.1103/PhysRevA.85.022312
https://link.aps.org/doi/10.1103/PhysRevA.85.022312
https://link.aps.org/doi/10.1103/PhysRevA.92.062305
https://doi.org/10.1103/PhysRevA.92.062305
https://doi.org/10.1103/PhysRevA.92.062305
https://link.aps.org/doi/10.1103/PhysRevA.92.062305
https://link.aps.org/doi/10.1103/PhysRevA.93.042320
https://doi.org/10.1103/PhysRevA.93.042320
https://doi.org/10.1103/PhysRevA.93.042320
https://link.aps.org/doi/10.1103/PhysRevA.93.042320
https://link.aps.org/doi/10.1103/PhysRevA.95.042335
https://link.aps.org/doi/10.1103/PhysRevA.95.042335


with spin chains, Phys. Rev. A 95 (2017) 042335. doi:10.1103/PhysRevA.95.042335.
URL https://link.aps.org/doi/10.1103/PhysRevA.95.042335

[31] G. Almeida, C. Mendes, M. Lyra, F. de Moura, Localization properties and high-fidelity state transfer in hopping models
with correlated disorder, Annals of Physics 398 (2018) 180–189. doi:https://doi.org/10.1016/j.aop.2018.09.003.
URL https://www.sciencedirect.com/science/article/pii/S0003491618302422

[32] P. Júnior, G. Almeida, M. Lyra, F. de Moura, Quantum communication through chains with diluted disorder, Physics
Letters A 383 (16) (2019) 1845–1849. doi:https://doi.org/10.1016/j.physleta.2019.03.010.
URL https://www.sciencedirect.com/science/article/pii/S0375960119302221

[33] G. M. A. Almeida, F. A. B. F. de Moura, M. L. Lyra, Entanglement generation between distant parties via disordered
spin chains, Quantum Information Processing 18 (2) (2019) 41. doi:10.1007/s11128-018-2157-6.
URL https://doi.org/10.1007/s11128-018-2157-6

[34] D. Messias, C. Mendes, G. Almeida, M. Lyra, F. de Moura, Rabi-like quantum communication in an aperiodic spin-1/2
chain, Journal of Magnetism and Magnetic Materials 505 (2020) 166730. doi:https://doi.org/10.1016/j.jmmm.2020.

166730.
URL https://www.sciencedirect.com/science/article/pii/S0304885319338958

[35] Y. Ji, Z. Wu, R. Liu, Y. Li, F. Jin, H. Zhou, X. Peng, Inverse engineering for robust state transport along a spin chain
via low-energy subspaces, New Journal of Physics 26 (1) (2024) 013041. doi:10.1088/1367-2630/ad19fd.
URL https://dx.doi.org/10.1088/1367-2630/ad19fd

[36] J.-M. Cai, Z.-W. Zhou, G.-C. Guo, Decoherence effects on the quantum spin channels, Phys. Rev. A 74 (2006) 022328.
doi:10.1103/PhysRevA.74.022328.
URL https://link.aps.org/doi/10.1103/PhysRevA.74.022328

[37] W. Qin, C. Wang, X. Zhang, Protected quantum-state transfer in decoherence-free subspaces, Phys. Rev. A 91 (2015)
042303. doi:10.1103/PhysRevA.91.042303.
URL https://link.aps.org/doi/10.1103/PhysRevA.91.042303

[38] G. Mouloudakis, T. Ilias, P. Lambropoulos, Arbitrary-length xx spin chains boundary-driven by non-markovian environ-
ments, Phys. Rev. A 105 (2022) 012429. doi:10.1103/PhysRevA.105.012429.
URL https://link.aps.org/doi/10.1103/PhysRevA.105.012429

[39] Y. Li, T. Shi, B. Chen, Z. Song, C.-P. Sun, Quantum-state transmission via a spin ladder as a robust data bus, Phys.
Rev. A 71 (2005) 022301. doi:10.1103/PhysRevA.71.022301.
URL https://link.aps.org/doi/10.1103/PhysRevA.71.022301

[40] G. M. Almeida, A. M. Souza, F. A. de Moura, M. L. Lyra, Robust entanglement transfer through a disordered qubit
ladder, Physics Letters A 383 (27) (2019) 125847. doi:https://doi.org/10.1016/j.physleta.2019.125847.
URL https://www.sciencedirect.com/science/article/pii/S0375960119306358

[41] J. Zurita, C. E. Creffield, G. Platero, Fast quantum transfer mediated by topological domain walls, Quantum 7 (2023)
1043. doi:10.22331/q-2023-06-22-1043.
URL https://doi.org/10.22331/q-2023-06-22-1043

[42] M. Motamedifar, M. Abbasi, M. Golshani, A.-B. A. Mohamed, A. H. Homid, Which spin ladders are the most effective
at transferring entanglements: two-legs or honeycombs!?, The European Physical Journal Plus 139 (1) (2024) 18. doi:

10.1140/epjp/s13360-023-04820-6.
URL https://doi.org/10.1140/epjp/s13360-023-04820-6

[43] S. Sil, S. K. Maiti, A. Chakrabarti, Metal-insulator transition in an aperiodic ladder network: An exact result, Phys. Rev.
Lett. 101 (2008) 076803. doi:10.1103/PhysRevLett.101.076803.
URL https://link.aps.org/doi/10.1103/PhysRevLett.101.076803

[44] S. Sil, S. K. Maiti, A. Chakrabarti, Ladder network as a mesoscopic switch: An exact result, Phys. Rev. B 78 (2008)
113103. doi:10.1103/PhysRevB.78.113103.
URL https://link.aps.org/doi/10.1103/PhysRevB.78.113103

[45] F. A. B. F. de Moura, R. A. Caetano, M. L. Lyra, Stationary, dynamical, and spectral electronic properties of a correlated
random ladder model with coexisting extended and localized states, Phys. Rev. B 81 (2010) 125104. doi:10.1103/

PhysRevB.81.125104.
URL https://link.aps.org/doi/10.1103/PhysRevB.81.125104

[46] R. A. Caetano, P. A. Schulz, Sequencing-independent delocalization in a dna-like double chain with base pairing, Phys.
Rev. Lett. 95 (2005) 126601. doi:10.1103/PhysRevLett.95.126601.
URL https://link.aps.org/doi/10.1103/PhysRevLett.95.126601

[47] R. C. P. Carvalho, M. L. Lyra, F. A. B. F. de Moura, F. Domı́nguez-Adame, Localization on a two-channel model with cross-
correlated disorder, Journal of Physics: Condensed Matter 23 (17) (2011) 175304. doi:10.1088/0953-8984/23/17/175304.
URL https://dx.doi.org/10.1088/0953-8984/23/17/175304

[48] G. M. A. Almeida, Interplay between speed and fidelity in off-resonant quantum-state-transfer protocols, Phys. Rev. A 98
(2018) 012334. doi:10.1103/PhysRevA.98.012334.
URL https://link.aps.org/doi/10.1103/PhysRevA.98.012334

9

https://link.aps.org/doi/10.1103/PhysRevA.95.042335
https://link.aps.org/doi/10.1103/PhysRevA.95.042335
https://link.aps.org/doi/10.1103/PhysRevA.95.042335
https://doi.org/10.1103/PhysRevA.95.042335
https://link.aps.org/doi/10.1103/PhysRevA.95.042335
https://www.sciencedirect.com/science/article/pii/S0003491618302422
https://www.sciencedirect.com/science/article/pii/S0003491618302422
https://doi.org/https://doi.org/10.1016/j.aop.2018.09.003
https://www.sciencedirect.com/science/article/pii/S0003491618302422
https://www.sciencedirect.com/science/article/pii/S0375960119302221
https://doi.org/https://doi.org/10.1016/j.physleta.2019.03.010
https://www.sciencedirect.com/science/article/pii/S0375960119302221
https://doi.org/10.1007/s11128-018-2157-6
https://doi.org/10.1007/s11128-018-2157-6
https://doi.org/10.1007/s11128-018-2157-6
https://doi.org/10.1007/s11128-018-2157-6
https://www.sciencedirect.com/science/article/pii/S0304885319338958
https://www.sciencedirect.com/science/article/pii/S0304885319338958
https://doi.org/https://doi.org/10.1016/j.jmmm.2020.166730
https://doi.org/https://doi.org/10.1016/j.jmmm.2020.166730
https://www.sciencedirect.com/science/article/pii/S0304885319338958
https://dx.doi.org/10.1088/1367-2630/ad19fd
https://dx.doi.org/10.1088/1367-2630/ad19fd
https://doi.org/10.1088/1367-2630/ad19fd
https://dx.doi.org/10.1088/1367-2630/ad19fd
https://link.aps.org/doi/10.1103/PhysRevA.74.022328
https://doi.org/10.1103/PhysRevA.74.022328
https://link.aps.org/doi/10.1103/PhysRevA.74.022328
https://link.aps.org/doi/10.1103/PhysRevA.91.042303
https://doi.org/10.1103/PhysRevA.91.042303
https://link.aps.org/doi/10.1103/PhysRevA.91.042303
https://link.aps.org/doi/10.1103/PhysRevA.105.012429
https://link.aps.org/doi/10.1103/PhysRevA.105.012429
https://doi.org/10.1103/PhysRevA.105.012429
https://link.aps.org/doi/10.1103/PhysRevA.105.012429
https://link.aps.org/doi/10.1103/PhysRevA.71.022301
https://doi.org/10.1103/PhysRevA.71.022301
https://link.aps.org/doi/10.1103/PhysRevA.71.022301
https://www.sciencedirect.com/science/article/pii/S0375960119306358
https://www.sciencedirect.com/science/article/pii/S0375960119306358
https://doi.org/https://doi.org/10.1016/j.physleta.2019.125847
https://www.sciencedirect.com/science/article/pii/S0375960119306358
https://doi.org/10.22331/q-2023-06-22-1043
https://doi.org/10.22331/q-2023-06-22-1043
https://doi.org/10.22331/q-2023-06-22-1043
https://doi.org/10.1140/epjp/s13360-023-04820-6
https://doi.org/10.1140/epjp/s13360-023-04820-6
https://doi.org/10.1140/epjp/s13360-023-04820-6
https://doi.org/10.1140/epjp/s13360-023-04820-6
https://doi.org/10.1140/epjp/s13360-023-04820-6
https://link.aps.org/doi/10.1103/PhysRevLett.101.076803
https://doi.org/10.1103/PhysRevLett.101.076803
https://link.aps.org/doi/10.1103/PhysRevLett.101.076803
https://link.aps.org/doi/10.1103/PhysRevB.78.113103
https://doi.org/10.1103/PhysRevB.78.113103
https://link.aps.org/doi/10.1103/PhysRevB.78.113103
https://link.aps.org/doi/10.1103/PhysRevB.81.125104
https://link.aps.org/doi/10.1103/PhysRevB.81.125104
https://doi.org/10.1103/PhysRevB.81.125104
https://doi.org/10.1103/PhysRevB.81.125104
https://link.aps.org/doi/10.1103/PhysRevB.81.125104
https://link.aps.org/doi/10.1103/PhysRevLett.95.126601
https://doi.org/10.1103/PhysRevLett.95.126601
https://link.aps.org/doi/10.1103/PhysRevLett.95.126601
https://dx.doi.org/10.1088/0953-8984/23/17/175304
https://dx.doi.org/10.1088/0953-8984/23/17/175304
https://doi.org/10.1088/0953-8984/23/17/175304
https://dx.doi.org/10.1088/0953-8984/23/17/175304
https://link.aps.org/doi/10.1103/PhysRevA.98.012334
https://doi.org/10.1103/PhysRevA.98.012334
https://link.aps.org/doi/10.1103/PhysRevA.98.012334

	Introduction
	Model
	Results
	Conclusion
	Acknowledgments

