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Abstract

We examine the properties of the one-magnon eigenstates in a Heisenberg chain
with correlated disorder in the presence of a magnetic field that increases lin-
early along the chain. The disorder distribution is tailored to have intrinsic
generalized exponential correlations. We further analyze the dynamic localiza-
tion of an initial wave packet and discuss how it is influenced by the correlations
and the strength of the magnetic field. We find that localized eigenstates are
predominant when the correlated disorder is characterized by a slower depen-
dence of the effective correlation length on the system size. In contrast, when
the effective correlation length increases at least with the square root of the
system size, low-energy eigenmodes undergo a transition to nearly delocalized
modes. We go further to analyze the impact of a linearly varying magnetic field
on the system dynamics. An initial Gaussian wave packet is shown to exhibit
dynamic localization, characterized by an oscillatory behavior reminiscent of
Bloch oscillations at specific correlation levels, before being damped in the long
time limit. Our findings advances the understanding of localization and trans-
port properties in the field of coherent magnonics as contributes to the design
of correlated disordered media.

1. Introduction

A well-established result in condensed-matter physics is that free particles in
1D and 2D lattices with uncorrelated disorder experience Anderson localization
across the entire energy spectrum. Additionally, it is understood that correlated
disorder can evade these effects by altering the localization length of certain
modes and enabling the coexistence of localized and extended modes, possibly
with well-defined mobility edges [1]. In reality, correlations are always present
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in a disorder distribution to some degree. This and the possibility of designing
and manipulating disorder for specific purposes have driven research towards
investigating the consequences of correlated disorder in the transport properties
of a variety of systems [2, 3, 4, 5]. Experimental realizations of correlated
disorder have been reported in waveguide arrays [6], cold atoms [7, 8], dielectric
nanodisk arrays [9], and coupled lasers [10].

Localization properties of waves in low-dimensional systems with correlated
disorder have been receiving significant attention [11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 1, 28]. For instance, the reduction of
thermal conductivity in insulators and semiconductors by incorporating corre-
lations within intrinsic disorder was studied in [11]. Simulations with isotropic
long-range spatial correlations in defect distributions demonstrated significant
reductions in phonon lifetimes and thermal conductivity, potentially by an or-
der of magnitude at room temperature. This research proposed a framework
to control thermal transport via structural correlations and identified optimal
correlation forms to minimize thermal conductivity. In [13], it was shown that
correlated disorder significantly affected photonic transport: quasiperiodic lat-
tices maintained nearly ballistic transport, amorphous lattices exhibited par-
tially destroyed transport, and completely random lattices deviated entirely
from ballistic transport. The photon spreading coefficient varied with the char-
acteristic length scale of the disorder, distinctly classifying disorder types in ma-
terials. In Ref. [14], a robust and unusual multifractal regime was reported in a
one-dimensional quantum chain with exponentially correlated disorder above a
certain threshold disorder strength. Prior to this regime, there are mixed and ex-
tended regimes at weaker disorder strengths. Such multifractal states differ from
conventional ones in that they are uniformly spread over a continuous chain seg-
ment, with lengths scaling non-trivially with system size. This anomaly affects
dynamics, leading to the ballistic transport of a localized wavepacket, unlike the
typically subdiffusive transport observed in multifractal systems.

A novel paradigm of dynamical quantum phase transitions driven by changes
in internal spatial disorder potential correlations was proposed in [18]. Anoma-
lous phase transitions due to infinite disorder correlation and quench dynamics
between random and pure system Hamiltonians were explored, including phase
transitions for prequench white-noise potential and delocalization signatures in
the correlated Anderson model. In Ref. [19], the superconductivity charac-
teristics of a disordered superconductor were investigated using an attractive
Hubbard lattice Hamiltonian with point interaction, designed to model s-wave
Cooper pairing. The study examined the effect of spatial correlations of disor-
der on the density of states and the superconducting coupling constant matrix
elements. Surface superconductivity persistence in the presence of weak to mod-
erate bulk disorder was demonstrated in [22]. Notably, under moderate disorder
conditions, the surface critical temperature can increase further, depending on
disorder intensity and correlation. In [24], the coupling of a disordered chain
(localized states) with a free chain (extended states) showed distinct localization
behaviors in overlapped and non-overlapped regimes without a phase transition.
Significant suppression of localization in the non-overlapped regime, influenced

2



by inter-chain coupling strength and energy shift between chains, suggested
localization lengths comparable to system sizes even under strong disorder, ver-
ified through extensive numerical methods. In [26], localization-delocalization
transitions in double chain models with long-range correlation were investigated.
Exact positions of mobility edges were identified, consistent with transfer matrix
numerical results. A second-order quantum phase transition due to interchain
correlation in on-site energy was identified, indicated by a critical exponent jump
in localization length. Without interchain correlation, the critical exponent was
determined by the chain with lesser long-range correlation.

In the context of quantum information processing and magnonics [29], the
transfer of a magnon state across a quantum Heisenberg model with correlated
disorder and random magnetic fields was investigated in [27]. The disorder fol-
lowed a power-law spectrum distribution, while magnetic fields were uniformly
random. Numerical investigations focused on the interplay between disorder
and correlation in transferring the magnon state across the chain. Transfer fi-
delity and end-to-end concurrence were evaluated to identify conditions under
which high-fidelity state transfer protocols were feasible despite the presence of
disorder.

In this work, we focus on the spectral and dynamical properties of one-
magnon states in the Heisenberg model assuming that coupling between spins
(exchange interaction) follows a disordered distribution containing exponential
correlations. The disorder distribution features a generalized correlation length
defined as a nonlinear function of the system size. Broadly speaking, most
correlated disorder models in the literature can be divided into two categories:
(i) models that exhibit a typical correlation length (with exponential decay or
another form with a characteristic length), or (ii) models whose correlation
function typically lacks a characteristic length (such as power-law or Bessel
functions). These categories have been widely investigate by members of this
work (see e.g. [27, 28, 30, 31, 32]). Here, we delve into a third class of corre-
lated disorder, where the system has a characteristic length, but this length has
a controllable dependence on the system size. This is one of the main distin-
guishing features of our model. We perform a systematic study of the transport
properties of the system via exact diagonalization of the Hamiltonian and using
the transfer matrix formalism. Additionally, we investigate the oscillatory dy-
namics of spin waves in the presence of a linear magnetic field. We show that,
for certain levels of correlation, the packet became dynamically localized with
an oscillatory behavior reminiscent of Bloch oscillations. Our findings deepen
the knowledge of localization and transport properties of magnetic systems in
correlated disordered media, which are promising platforms for, e.g., magnonics
[29].

2. Model and formalism

We consider a disordered chain of N Heisenberg spins (S = 1/2). In our

model, a magnetic field perpendicular to the chain direction is denoted by ~Hn
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at each spin. The Hamiltonian for this model is given by:

H = −
N∑

n=1

[
Jn~Sn · ~Sn+1 + ~Hn · ~Sn

]
, (1)

where ~Sn are the local spin operators acting on site n, Jn represents the exchange
couplings connecting sites n and n + 1. The magnetic field is defined long the
z−direction as ~Hn = [(νBηH0)n]~z = (Hn)~z [30, 33]. Therefore, its intensity
grows linearly with the distance n from left edge of the chain. We assume that
Jn is given by a generalized exponentially correlated disorder distribution. To
build such a sequence, we initially generate Zn defined as:

Zn =

N∑
k=1

(
e−|n−k|/L0

)
Rk, (2)

whereRk are random numbers uniformly distributed within the interval [−0.5, 0.5].
The generalized correlation length L0 is given by L0 = bNa, where a and b are
tunable parameters. It is important to note that the points a = 0 and b = 0
are not included in the definition presented in the previous equation. Further,
we normaliz Zn to keep 〈Zn〉 = 0 and 〈Z2

n〉 − 〈Zn〉2 = 1. The spin coupling
distribution is therefore generated as Jn = 2 + tanh (Zn).

Let us address the series of Jn and its dependence on the values of a and
b. We start by computing the autocorrelation function defined as C(r) =
[〈JnJn+r〉− 〈Jn〉〈Jn+r〉]/[〈J2

n〉− 〈Jn〉2]. In Fig. 1, we display C(r) as a function
of r for several values of a and b. We observe that for a → 0 and b → 0, the
function C(r) seems to become negligible for r > 0, i.e., the disorder distribution
becomes uncorrelated. For large a and b, the autocorrelation function exhibits
an exponential decay at non-zero distances (r > 0).

The primary focus of our work is to understand the effect of those corre-
lations on the eigenstate properties of the Heisenberg model described above.
In particular, we are interested in studying the one-magnon subspace of this
Hamiltonian. The ferromagnetic ground state composed of all spins pointing in
the same direction is represented by |0〉. Then, |n〉 = S+

n |0〉 describes a single
spin flipped at site n. The eigenstates of the Hamiltonian are therefore given
by |Ψj〉 =

∑N
n=1 f

j
n|n〉, where the coefficients f jn satisfies the equation [30, 34]

(Jn + Jn−1)f jn − Jnf
j
n+1 − Jn−1f

j
n−1 + 2Hnf

j
n = 2Ejf

j
n. (3)

By expressing the previous equation in matrix form and diagonalizing it
we can determine the eigenfunctions {f jn} and eigenvalues {Ej}. Then, the
density of states reads DOS(E) =

∑
j δ(E − Ej). We will also be interested

in the participation ratio, defined by Pj =
[∑N

n=1 |f jn|4
]−1

. It is important to

note that Pj remains constant for localized states and is proportional to N for
extended states [1]. In general, calculations of the participation function requires
many averages. Therefore, our study do not focus directly on the participation
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Figure 1: Autocorrelation function C(r) versus r and a for b = 0.1 and b = 0.2.

Pj of each discrete eigenvalue j. Instead, we use distinct samples to calculate
an average participation function 〈P 〉. Specifically, for a given energy E, the
average 〈...〉 is calculated using all the data obtained within a small energy
window, i.e., considering all the eigenvalues in the region [E − δE/2, E + δE/2]
with δE ≈ 0.05.

We are able to gain further insight into the nature of the eigenstates by using
the transfer matrix formalism [1, 28, 35]. This method allows us to calculate the
localization length λ = {limN→∞(1/N) log [|XNK(0)|/|K(0)|]}−1. We stress
that K(0) =

(
f1
f0

)
represents a generic initial condition and XN denotes the

product of all transfer matrices. The behavior of λ is similar to that observed
for Pj ; λ is constant for localized states and proportional to N for extended
modes.

The time evolution of an arbitrary one-magnon wavepacket |Ψ(t = 0)〉 =∑N
n=1 yn(t = 0)|n〉 is obtained using yn(t) =

∑
j{Mjf

j
ne
−iEjt} where Mj =∑N

n=1 yn(t = 0)f jn. The time-dependent magnon position is thus given by

〈n〉(t) =
∑N

n=1(n|yn(t)|2).

3. Results

We begin by examining the density of states, averaged participation number
〈P 〉, and the inverse of the localization length (1/λ) for H = 0, b = 0.1, and
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Figure 2: (i) Density of states (DOS), (ii) averaged participation number 〈P 〉, and (iii)
logarithm of the inverse of the localization length 1/λ for H = 0, b = 0.1, and a = 0.25 up to
a = 1.
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Figure 3: (i) Averaged participation number 〈P 〉0 for E . 2 versus a for b = 0.1, H = 0,
and N = 800 up to 19200. (ii) Finite size scaling of 〈P 〉0 for b = 0.1 and several values of a.
Here, the modes from E = 0 to E = 0.1 are not included because of the localization-length
anomaly.
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Figure 4: (i) Scaled λ0/N versus a and b. (ii) Finite size scaling of λ0 for b = 0.1 and several
values of a. Calculations were done for H = 0.

a = 0.25, increasing up to a = 1. We used numerical diagonalization with
N = 800 spins over 200 distinct samples, The transfer matrix procedure was in
turn applied to N = 3× 105 spins throughout.

The main findings are summarized in Fig. 2. Our analysis indicates that the
allowed energy levels are within E ∈ [0, 6]. Moreover, both the participation
number and the inverse of the localization length show that for low-energy levels
(E . 2) and strong correlations (a → 1), the localization length is increased.
Particularly, for small values of a the participation number is greatly enhanced
at E = 0 [see the a = 0.25 curve in Fig. 2(ii)]. The Heisenberg spin model
we investigate here supports an anomalous mode at that level (see e.g. Refs.
[31, 32]). Thus, for energies close to E = 0, the typical wavelength of the
spin states increases dramatically, making them less susceptible to scattering by
disorder. As a result, these modes exhibit a large localization length, even in
the regime of weak correlations.

With those properties in mind, we conduct a finite size scaling of 〈P 〉0 and
λ0 within this energy range (with subscript 0 denoting that). In Figure 3(i),
we plot the former quantity versus a, considering b = 0.1, N = 800, up to
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N = 19200. We clearly observe a significant growth in the participation with N
for a ≥ 0.5. In this range, the results indicate very weak localization, with the
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average size of the eigenstates being of the order of the size of the chain. For
a values below 0.5, the participation shows weak dependence on N , signalizing
the presence of localized states. In Figure 3(ii), a more detailed description
involving the rescaled participation 〈P 〉0/N as a function of system size N is
showed. We see that, indeed, for a ≥ 0.5, the average participation exhibits an
almost linear behavior with N . We mention that in Fig. 3 the modes around
E = 0 (up to E = 0.1) are excluded due to the localization-length anomaly [31].

We emphasize that the calculations of the participation number were limited
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to small or intermediate values of N as exact diagonalization was employed.
However, within this context, the calculations of the localization length provide
us with the opportunity to consider large systems. In Fig. 4(i), the scaled
localization length λ0/N for E ≤ 2 versus a and b is depicted. It shows that for
significant range of a and b values, the localization length is of the order of the
system size. In Fig. 4(ii), we perform a finite size scaling analsis of λ0 for b = 0.1
and a = 0.1 up to a = 1. For a = 0.1, the localization length remained roughly
independent of N , indicating strong localization. As a increases, the localization
length follows the trend and eventually acquires a nearly linear dependency on
N , namely λ0 ∝ N0.95 for a ≥ 0.5. These results suggest the onset of localization
at the thermodynamic limit, with λ0/N → 0 as N → ∞. However, strictly
speaking, we can only affirm that this limit implies an extremely weak degree
of localization (an almost extended mode) within the system sizes considered
in our calculations. We note that the results for b > 0.1 are qualitatively the
same.

We now move on to explore the time dynamics of system in the presence
of a magnetic field H > 0. For this, we prepare an initial wave packet having
a Gaussian shape, yn(t = 0) = We−|n−N/2|2/4, where W is a normalization
constant. In Figs. 5 and 6 (left panels), we plot the expected magnon position
over time for several values of a and H, with fixed b = 0.1. The numerical
solution of the time-dependent Schrödinger equation was done using direct cal-
culations of the evolution operator e−iHt, with the norm I of the wave function
remained stable, |I − 1| < 10−10, for all simulations. In the figures, we observe
a characteristic oscillatory pattern very similar to Bloch oscillations. This class
phenomena is often studied in electronic models but it has also been observed
in the context of magnons [30, 36].

One of the main approaches to characterize Bloch oscillations is by calcu-
lating their characteristic frequencies. The Fourier transform of the magnon
position, 〈n〉(ω), is displayed in the right panels of Figs. 5 and 6. Note that,
for a ≤ 0.5, the oscillatory pattern contains a wide range of frequencies in the
region of ω < 1. For a = 0.5, a wide distribution is centered around the fre-
quencies ω ≈ H. If a increases, the Fourier spectrum becomes narrower, as seen
for a = 1 in Fig. 6.

Now, the question arises as to whether these oscillations with frequency
ω ≈ H are genuine Bloch oscillations. Based on our previous analysis, these
are not. The associated modes are not truly extended; rather, they are low-
energy states, in which the localization length increases with N , albeit somewhat
more slowly than expected in 1D systems. The presence of these extended
localization lengths, combined with the applied fields allowed us to observe
oscillations over extended periods. However, over significantly longer times, the
oscillatory pattern will begin to deteriorate.

Last but not least, we discuss some additional properties of the correlated
disorder distribution we are using and its effect on the localization properties of
the Heisenberg model in smaller scales. A convenient measure is defined as σL =∑l=N/L

u=1

(
du

l

)
, where du = 〈J2

n〉L − (〈Jn〉L)2. In practice, we divide the chain

10



into l segments, each of size L, and then we calculate the width of the disorder
du in each of these segments. The local disorder σL is thereby the average of the
l values of du. The main results can be found in Fig. 7. We observe that for the
region where the correlation function becomes finite, the local disorder decreases
considerably, with σL assuming values between 0.03 and 0.05. In the literature
of correlated disorder models, this aspect is sometimes pointed out as the single
ingredient promoting the increase of the localization length. In some cases, it
is possible to stablish a direct relationship between the localization length and
the correlation function [1]. Here, however, we can argue that an uncorrelated
Heisenberg chain with weak local disorder produces a more intense degree of
localization compared to the correlated scenario. Let us consider, for example,
the variable Zn = 2 cos (2πn/N + φ) + ∆Rn, where φ is a random phase chosen
within the interval [0, 2π], Rn are random numbers uniformly distributed within
the interval [0, 1], and ∆ is a tunable parameter. Again, the spin-spin coupling
is obtained following the transformation introduced earlier. In general, this
results in a disordered distribution with the same boundaries, but with weak
local disorder (controlled by ∆ > 0).

In Fig. 8, a finite size analysis for λ0 obtained via the transfer matrix method
is shown. For ∆ = 0.05, the localization length seems to saturate more quickly
for longer chains, indicating stronger localization compared to the correlated
case. We emphasize that when ∆ = 0.1, 0.15, the local disorder is comparable to
that obtained in the correlated case with a = 1 and b = 0.1, 0.2. Therefore, our
calculations clearly indicate that this type of disorder distribution, characterized
by generalized exponential correlations, significantly contributes to the increase
of the localization length.

4. Summary

We investigated a Heisenberg model featuring correlated disorder, an ingre-
dient which is of significant interest in various fields [2, 3]. Here, the exchange
couplings between the spins followed a disordered distribution with a exponen-
tial correlations whose the effective correlation length depended on the system
size. In particular, by focusing in the one-magnon subspace, we explored the
energy spectrum and the nature of the eigenstates via numerical exact diago-
nalization and also with the aid of the transfer matrix formalism. Our results
indicated that models with correlated disorder, where the effective correlation
length exhibits a slower dependence on the system size, mostly support localized
eigenstates. Conversely, when the effective correlation length increases at least
as the square root of the system size, the eigenmodes in the low energy region
become nearly delocalized.

The dependence of the localization length on the degree of correlation is a
key point in our paper. Broadly speaking, for small a (close to zero), the ef-
fective localization length is a function that increases very slowly with N . As
a result, in large systems, the effective region where correlations exist becomes
negligible (i.e., L0/N quickly approaches zero). This suggests that the disorder
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is essentially uncorrelated, and thus, the localization length is expected to re-
main constant (independent of N). As a approaches 1, the correlation length
L0 begins to show a stronger dependence on the system size, and the poten-
tial exhibits more pronounced correlations spread over a larger region (which
becomes comparable to the system size in the limit a → 1). Consequently, the
localization length takes on a non-trivial dependence on N , eventually increas-
ing with N and even approaching a nearly linear relationship. In other words,
our model, despite having a characteristic correlation length, is able to promote
a growth in the localization length to levels of the order of the system size.

We also computed the consequences of a magnetic field that varies linearly
with the distance. Specifically, we showed that an initial Gaussian wave packet
will undergo dynamic localization characterized by an oscillatory behavior re-
membering Bloch oscillations under certain correlation levels, but eventually
dying off in the long time limit. This provided further insights into the inter-
play between correlated disorder and the magnetic field on Heisenberg models.
At this point it is relevant to address a few lines about the possible consequences
of a random magnetic field on our findings. In general, this would introduce a
random diagonal term in the Hamiltonian, thereby weakening the effects of the
correlated disorder. If the disorder strength of the random magnetic field has an
intensity comparable to or above the average spin coupling, then the localiza-
tion length of the eigenstates is expected to decrease significantly, also affecting
the anomalous low-energy states. Furthermore, the oscillatory dynamics of the
wavepacket would be suppressed much earlier in time.

As far as experimental realizations of Heisenberg models are concerned, we
mention that there has been substantial progress in the field of cold atoms in
optical lattices [7, 8, 37], which allows for a high degree of tuning of the param-
eters. In addition, spin transport mediated by exchange interactions has been
observed in quantum dots [38] and bulk materials [39, 40]. Furthermore, the
magnetic system studied here can be readily mapped onto a tight-binding model,
making coupled waveguide arrays promising candidates for the implementation.
In those systems, the separation between the waveguides can effectively assume
the role of the exchange couplings. Hence, in principle any disorder profile could
be envisaged within such framework [6, 41, 42].

Tailored disorder correlations can drastically influence the localization prop-
erties of magnons, suggesting potential avenues for applications in condensed-
matter physics, magnonics, and quantum information processing, and more.
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