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a b s t r a c t

In this paper, we study numerically the one-electron dynamics in a Fermi–Pasta–Ulam disordered chain.
In our model the atoms are coupled by a random harmonic force and a nonlinear cubic potential. The
electron–lattice interaction was considered such that the kinetic energy of the electrons depends on the
effective distance between neighboring atoms. Basically, the hopping term will increase exponentially
when thedistance betweenneighboring atomsdecreases. By solving numerically the equations describing
the dynamics for the electron and lattice, we can compute the spreading of an initially localized electronic
wavepacket. Our results suggest that the soliton excitation induced by the nonlinear cubic interaction
present in the Hamiltonian can control the electron dynamics across the entire lattice. We report
numerical evidence of the existence of a soliton–electron pair in Fermi–Pasta–Ulam disordered chains.
We discuss in detail the conditions necessary for promoting the electron transport mediated by solitons
in this model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years the transport properties of nonlinear lattices
have attracted significant interest from the solid state community
as well as within the nonlinear science field [1–32]. In fact, it has
been proposed by several authors [7–25] that the electron–phonon
interaction plays a relevant role in transport and thermodynamics
properties. As regards the electronic transport, the interaction be-
tween electrons and lattice vibrations leads to an effective non-
linearity [17–32]. Davydov [12–16] was one of the first to pro-
pose that this nonlinear character of the electron–lattice term can
promote charge transport. The electrosoliton concept proposed by
Davydov is based on the nonlinear combination of a linear elec-
tronic model and a soliton-bearing equation dynamically describ-
ing a linear lattice. Recently, other studies have considered sys-
tems in which either the lattice or the quantum particle interac-
tions, or both, are themselves nonlinear. In particular, nonlinear
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discrete lattices are known to exhibit genuine intrinsic localized
modes (solitons) or discrete breathers [17–19]. In Refs. [17–25],
M.G. Velarde and co-workers demonstrated the existence of a po-
laron–soliton ‘‘quasiparticle’’ in nonlinear lattices, and have also
emphasized its importance to the carrying of charge. The cou-
pling of self-trapped states (polaron states)with the lattice solitons
has been generally termed a solectron [17–25]. The solectron con-
cept appears as a significant generalization of the original polaron
concept, that can mediate non-Ohmic supersonic electric conduc-
tion [25]. Moreover, recently it was shown that in anharmonic
one-dimensional crystal lattices, pairing of electrons or holes in a
localized bisolectron state is possible due to the coupling between
the charges and the lattice deformation that can overcome the
Coulomb repulsion [7]. The dynamics of two interacting electrons
in nonlinear models was also studied in Ref. [33]. By using numer-
ical methods to solve the time-dependent nonlinear Schrödinger
equation for an initially localized two-electron singlet state, it was
shown that themagnitude of the electron–phonon coupling neces-
sary for promoting the self-trapping of the electronic wavepacket
decreases as a function of the electron–electron interaction.

The electron transport mediated by lattice vibration is a new
phenomenon and it is strongly dependent on the kinds of atomic
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vibrational modes allowed. The nature of the vibrational modes in
low-dimensional lattices depends on the kinds of atomic forces and
also the lattice topology [34–48]. It is well known that the pres-
ence of anharmonicity promotes a richness of unusual vibrational
modes. Moreover, the presence of nonlinear atomic interaction
was pointed out as a key ingredient involved in the thermal con-
ductivity in classical lattices [39–47]. One of the most well known
properties of nonlinear chains is the presence of kink-soliton
solutions. It is well known that the solitonic effect is damped
by the presence of disorder. In fact, the scattering of solitons
by disorder can be measured through the reduction of localized
energy within the localization region, the time-dependent accel-
eration of the energy flux and the long-time behavior of the diffu-
sion coefficient. The well known paper by Fermi, Pasta and Ulam
was the first work that pointed out the importance of anharmonic
forces in physics [48]. The dynamics of the energy in anharmonic
chains was studied in detail and the manifestation of solitons was
pointed out. Besides having shown the complexity of nonlinear
systems [5], the FPU model also emphasized the value of com-
puter simulations in the context of theoretical physics [5,48]. The
competition between disorder and anharmonicity was studied in
detail in Ref. [46]. It was numerically demonstrated that, while
anharmonicity promotes energy transport through ultrasonic soli-
tons, disorder decreases the propagation due to the well known
Anderson localization [46]. The soliton dynamics in a Toda lat-
tice with randomly distributed masses was studied in Ref. [47].
The disordered Toda model consists of a one-dimensional chain
of disordered masses where each mass interacts with the others
through a nearest-neighbor exponential potential. By using the in-
verse scattering transform, the effective equations for the decay of
the soliton amplitude that take into account radiative losses were
derived. It was shown that the soliton energy decays as ∝ N3/2

for small-amplitude solitons and ∝ exp(2N) for large-amplitude
solitons [47]. Moreover, in a more general context, the presence of
nonlinearity in non-periodic solids represents a general challenge
with a rich framework of non-intuitive phenomena.

In this work, we focus on the electron transport on non-
periodic anharmonic classical lattices. We study numerically the
one-electron dynamics in a one-dimensional alloy in which the
atoms are coupled by a random harmonic force and also a non-
linear cubic potential. The harmonic elastic constants will be con-
sidered to follow a long-range correlated disorder distribution.
By using a Fourier formalism we can generate several degrees of
correlations by controlling a single parameter, γ . Our model for
studying electronic transport is based on a Hamiltonian where the
electron transport is treated quantum mechanically over the alloy
in a tight-binding approximation and the longitudinal vibrations of
the lattice are described by using a classical formalism. The elec-
tron–lattice term was considered in an intuitive way. The transfer
integral for neighboring atoms, also called the hopping term, repre-
sents the electron kinetic energy and depends on the effective dis-
tance between neighboring atoms. Basically, the hopping termwill
increasewhen the distance between neighboring atoms decreases.
We will follow M.G. Velarde and co-workers [9–11] by consider-
ing an exponential form of the electron–lattice interaction. Due to
the presence of nonlinearity in the lattice, the present exponential
form works better than the linear Su–Schrieffer–Heeger [49] ap-
proximation used previously [27–29]. By numerically solving the
equations for the dynamics of the electron and lattice, we can com-
pute the spreading of an initially localized electronic wavepacket.
Our results suggest that at the strong correlation limit γ ≥ 2, the
soliton excitation induced by the nonlinear cubic interaction exist-
ing in theHamiltonian can control the electrondynamics across the
entire lattice. We report numerical evidence of the existence of a
soliton–electron pair in Fermi–Pasta–Ulam disordered chains. We
compare the mobile trapped electron wavepacket obtained with

the energy spatial distribution, thus obtaining support for our find-
ing. For the weak correlation limit γ < 2, our calculations indicate
the absence of electron transport mediated by solitons. However,
our calculations reveal a super-diffusive wavefunction spread, in
contrast to the sub-diffusive behavior obtained previously in har-
monic lattices [26].

2. Theory and numerical calculation

We consider one electron moving in a 1D anharmonic lattice of
N masses. The complete Hamiltonian for one electron coupled to
the vibrations of a nonlinear chain can be written as

H =


n

hn +


n

Vn+1,n(c
Ď
n+1cn) +


n

ϵncĎncn (1)

where cĎn and cn are the creation and annihilation operators for the
electron at site n. Vn is the bare hopping amplitude and ϵn is the
on-site energy of site n. hn(t) represents the classical energy of the
mass at site (n) given by

hn(t) =
P2
n

2mn
+

1
4


βn(Qn+1 − Qn)

2
+ βn−1(Qn − Qn−1)

2


+
η

6


(Qn+1 − Qn)

3
+ (Qn − Qn−1)

3

. (2)

Here Pn and Qn define the momentum and displacement of the
mass at site (n). Here we will consider all masses identical, with
mn = 1 and the on-site term ϵn = 0. The harmonic elastic
constants βn will be considered to follow a rule given by

βn = b0 + a0 tanh θn, (3)

where b0 and a0 are constants with b0 > a0 and θn is a long-
range correlated disorder distribution. One of the simplest ways
to numerically generate a long-range correlated sequence θn is to
write its Fourier decomposition as follows [50]:

θn = Cγ (N)

N/2
k=1

1
kγ /2

cos


2πnk
N

+ φk


. (4)

Here, the φk are N/2 independent random phases uniformly
distributed within the interval [0, 2π ], and Cγ is a normaliza-
tion constant. The hyperbolic transformation of the series yields
the advantage of bounding the interval of the random variable
without changing its asymptotic correlation function. We will
keep the mean value of the sequence θn equal to zero (i.e.,
⟨θn⟩ = 0) and choose Cα to keep the variance size independent

⟨θ2
n ⟩ − ⟨θn⟩2 = 1


. The long-range nature of the correlations

results from the power-law dependence of the amplitudes on the
wavevector characterizing each Fourier component. In the case
γ → 0, one recovers an uncorrelated random sequence. For the
opposite limit γ → ∞, θn is analogous to a harmonic function.
Intermediate values of γ give rise to a long-range correlated se-
quence. All calculations in this work will be done for b0 = 1
and a0 = 0.25. The reason behind this choice is simple: we are
interested in following Ref. [51], keeping the mean value of the
harmonic spring constants equal to unity and dealing with the
intermediate disorder limit


⟨β2

n ⟩ − ⟨βn⟩
2 < ⟨βn⟩


. In our calcu-

lations,we assume that there is no disorder in the anharmonic con-
tribution. For βn = const, Eq. (2) is the Fermi–Pasta–Ulam (FPU) α
model [48].

Following M.G. Velarde and co-workers [7–11,17–25], the
interaction between the electron and the vibrational modes will
be considered in our model by relating the electronic parameters
Vn+1,n with the displacements of the molecules from their
equilibriumpositions. The hopping elements Vn+1,n will depend on
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the relative distance between two consecutive molecules on the
chain, following the expression

Vn+1,n = −V0 exp[−α(Qn+1 − Qn)]. (5)

The quantity α will define how the hopping term Vn+1,n will
depend on the relative displacement of lattice units, or in
other words, it determines the electron–lattice coupling strength.
Following Refs. [7–11,17–25], we would like to stress that
the exponential form of the electron–lattice interaction works
for both small and large relative displacements, thus going
beyond the range of harmonic interaction considered in previous
papers [26,29]. For small relative displacements we recover the
Su–Schrieffer–Heeger approximation Vn+1,n ≈ −V0[1− α(Qn+1 −

Qn)]. In our calculations we will use units such that V0 = 1.
We will follow the time evolution of an initially localized one-

electron wavepacket. The time-dependent wavefunction Φ(t) =
n cn(t)|n⟩ will be obtained by numerical solution of the time-

dependent Schrödinger form. We consider the electron initially
localized at site N/2, i.e. |Φ(t = 0)⟩ =


n cn(t = 0)|n⟩ where

cn(t = 0) = δn,N/2. The Wannier amplitudes evolve in time
according to the time-dependent Schrödinger equation as (h̄ = 1)

i
dcn(t)
dt

= − exp[−α(Qn+1 − Qn)]cn+1(t)

− exp[−α(Qn − Qn−1)]cn−1(t). (6)

Moreover, the lattice equation can be written as

d2Qn(t)
dt2

= βn(Qn+1 − Qn) − βn−1(Qn − Qn−1)

+ η[(Qn+1 − Qn)
2
− (Qn − Qn−1)

2
]

− α

exp[−α(Qn+1 − Qn)](c∗

n+1cn + cn+1c∗

n )

− exp[−α(Qn − Qn−1)](c∗

n cn−1 + cnc∗

n−1)

. (7)

Our numerical formalism will be based on the precise numerical
solution of the previous form, Eqs. (6) and (7). Both equations for
the dynamics will be solved by using a standard Dormand–Prince
eighth-order Runge–Kutta method with monitoring of local
truncation error [52] with time step dt ≈ 10−3. The spatial and
temporal evolution of the lattice vibrations will be described via
the energy hn(t) of the mass at site (n). Aiming to characterize
the dynamic behavior of the wavepacket, we computed a typical
quantity that can yield information about the electronic transport
in this nonlinear model, namely, the participation function, which
is defined as [53,54]

ξ(t) = 1/

n

|cn(t)|4. (8)

The participation function gives an estimate of the number of base
states over which the wavepacket is spread at time t . In particular,
the asymptotic participation number becomes size independent
for localized wavepackets. On the other hand, ξ(t → ∞) ∝ N
corresponds to the regime where the wavepacket is uniformly
distributed over the lattice [53,54].

3. Results and discussion

We obtained the time evolution of a wavepacket initially
localized at the center of a self-expanding chain (i.e.


cn(t =

0) = δn,N/2

) numerically. Following Ref. [46], an initial impulse

excitation (Pn = δn,N/2Qn = 0) was used in our calculations. The
self-expanding chain was used to minimize end effects; whenever
the probability of finding the electron at the ends of the chain
exceeded 10−30, ten new sites were added to each end. Numerical
convergence was ensured by checking the conservation of the
norm of the wavepacket at every time step; our results provide

Fig. 1. Participation number ξ(t) versus time for γ = 0, η = 1 and α = 1 up to 6.
Our results suggest that the electron propagation increases as the electron–lattice
interaction is increased.

|1−


n |cn(t) |
2
| < 10−10 for all times considered. All calculations

were averaged over 20 disorder configurations. We plot in Fig. 1
the participation number ξ(t) versus time for γ = 0, η = 1
and α = 1 up to 6. Let us stress that for γ = 0 and η =

1 we are dealing with an α-Fermi–Pasta–Ulam chain where the
harmonic constants exhibit an uncorrelated random distribution.
Our calculations indicate that as the electron–lattice interaction is
increased, the electron propagation also increases. We can see this
by examining the time evolution of the participation number, i.e.,
ξ ∝ t0.45(5) for α = 1 and ξ ∝ t0.85(5) for α = 6. The increase
of the electron spread induced by electron–phonon coupling was
reported previously for harmonic systems in Refs. [26,29]. Our
calculations indicate numerically that a similar framework can
be obtained for anharmonic systems with uncorrelated disorder.
We need to stress that with the present anharmonic model, the
super-diffusive propagation obtained was significantly larger than
that for the sub-diffusive rule (ξ ∝ t0.3) obtained for harmonic
systems previously [26]. Now we will include the effect of long-
range correlated disorder into thismodel.We consider now γ > 0.
We plot in Fig. 2 the participation number ξ(t) versus time for
η = 1, γ = 1up to 4, andα = (a) 1, (b) 2 and (c) 3. Our calculations
reveal a nontrivial phenomenon. For γ < 2 our calculations are
in good agreement with Fig. 1, i.e., the electron spread increases
as the electron–lattice interaction is increased. However, for γ ≥

2 we obtain am unexpected result: the participation number
decreases substantially. In fact, the electron wavefunction seems
to be trapped in a small fraction of the lattice. Aiming to elucidate
the possibility of electron mobility in this nonlinear chain, we will
compute the mean position (centroid) defined as [53,54] ⟨n(t)⟩ =

n n|cn(t)|
2. In Fig. 3 we plot ⟨n(t)⟩ versus time t for γ =

3, η = 1 and α = 3. We can see that, in spite of the width
of the wavefunction remaining finite (see Fig. 2), the wavepacket
centroid evolves with time. These results suggest the possibility
of electron transport. In order to understand what is happening
here, we will examine the time-dependent wavefunction profile.
In Fig. 4(A)–(D) we plot |cn|2 versus t and n for η = 1, γ =

3 and α = 4, 6, 8, 10. Calculations were done using a finite
lattice with N = 600 sites. We can see clearly that, in good
agreement with previous results shown in Fig. 2, the wavefunction
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Fig. 2. Participation number ξ(t) versus time for η = 1, γ = 1 up to 4 and α = (a) 1, (b) 2 and (c) 3. For small γ our calculations are in good agreement with Fig. 1, i.e., the
electron spread increases as the electron–lattice interaction is increased. For γ ≤ 2 the electron wavefunction seems to be trapped in a small fraction of the lattice.

remains trapped in a finite fraction of the lattice. Moreover, we
can also see that the localized electronic wavepacket is moving
along the chain. The dynamics of the localized wavefunction
shown in Fig. 4(A)–(D) explain the centroid behavior obtained
in Fig. 3. We need to understand the mechanism behind this
electronic dynamics. We are dealing with a disordered nonlinear
chain. For γ ≥ 2 the harmonic spring constants are a long-
range correlated sequence. It was numerically demonstrated that
the low-frequency modes of a harmonic model with correlated
disorder display an extended behavior. On the other hand, the
cubic nonlinearity considered here promotes the appearance
of soliton modes. However, solitons are scattering due to the
presence of disorder, thus reducing the localized energywithin the
localization region, the time-dependent acceleration of the energy
flux and the long-time behavior of the diffusion coefficient. The
competition between disorder and anharmonicity was studied in
detail in Ref. [46]. It was numerically demonstrated that, while
anharmonicity promotes energy transport through ultrasonic
solitons, disorder decreases the propagation due to the well
known Anderson localization [46]. Here, the competition between

correlated disorder and nonlinearity seems tomaintain the soliton
modes. Moreover, the electron–lattice interaction considered here
promotes the appearance of a kind of electron–soliton pair. In
order to give more information about this key point, we will study
the spatial and temporal evolution of the energy of the lattice
vibrations described in terms of the energy hn(t) of the mass at
site (n). The spatial–temporal shape of hn(t) was previously used,
both from analytical and numerical points of view, to detect the
presence of solitonicwaves in anharmonic periodic and disordered
systems [45,46]. We plot in Fig. 5 hn(t) times t and n for an
anharmonic chain with long-range correlated harmonic terms
(γ = 3) and cubic nonlinearity with η = 1. We have used an
initial impulse excitation located at site n0 = N/2. Our results
have shown that the initial excitation propagates along the chain
in a soliton-like mode. Within our numerical precision, the energy
intensity of this soliton-like mode seems to remain constant. We
can see that the picture shown in Fig. 5 is in good agreement with
the wavefunction dynamics obtained in Fig. 4(A)–(D). Therefore,
our results in fact suggest that the coupling between the electron
and this nonlinear lattice promotes the appearance of a mobile
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Fig. 3. The electron mean position (centroid) defined as ⟨n(t)⟩ =


n n|cn(t)|
2

versus time t . We can see that the wavepacket centroid evolves with time, thus
suggesting the possibility of electron mobility.

electron–soliton pair. We can observe that as the electron–lattice
term α is increased, the soliton mode can come to trap the initial
electronic wavepacket completely. Therefore, the electron–soliton
pair becomes more well defined, almost completely focused at
a single point. We would like to emphasize that the existence
of an electron–soliton pair like the one found here favors the
electron transport even in the presence of disorder. In Refs.
[7–11,17–25], the electronic transport in a nonlinear Morse lattice
was also mediated by an electron–soliton particle, called the
solectron by the authors. Here, we have considered a distinct type
of nonlinearity and also included the effect of static disorder.

We demonstrated numerically the possibility of electron–soliton
pair formation even in disordered nonlinear chains. We would
like to stress that the calculations shown here, in spite of having
been made for η = 1, are valid for other values of η > 0. In
fact, the degree of nonlinearity can change some specificities
of solitons; however, the existence of an electron–soliton pair
becomes unchanged. The main point here was the possibility of
electron transport mediated by solitons in disordered nonlinear
Fermi–Pasta–Ulam chains.

4. Conclusions

In summary, we studied the electronic dynamics on
non-periodic anharmonic classical lattices. We have studied nu-
merically the one-electron dynamics in amodifiedα-Fermi–Pasta–
Ulam case with long-range correlated disorder in the harmonic
terms. In our model the electron transport was treated quantum
mechanically over the alloy in a tight-binding approximation and
the longitudinal vibrations of the lattice were described by using a
classical formalism. The electron–lattice termwas considered such
that the transfer integral for neighboring atoms was dependent on
the effective distance between neighboring atoms. We have used
an exponential for the electron–lattice interaction [9–11]. By using
a high-precision Runge–Kutta formalism for solving the equations
for the dynamics of the electron and lattice, we can compute the
spreading of an initially localized one-electron wavepacket. Our
main results can be separated into two parts: (1) For disordered
nonlinear chains with weak correlations (γ < 2) we find the elec-
tronic dynamics to display a sub-diffusive behavior for weak elec-
tron–phonon interaction (α ≈ 1) and a super-diffusive behavior
for strong electron–lattice interaction (α > 1). These results are
a generalization of the previous calculations [26,29] concerning
one-electron transport in disordered harmonic chains with elec-
tron–phonon coupling. The novel feature that we point out here is

Fig. 4. The square wavefunction component |cn|2 versus t and n for η = 1, γ = 3 and ((A)–(D)) α = 4, 6, 8, 10. Calculations were done for a lattice with N = 600 sites.
The wavefunction remains trapped in a finite fraction of the lattice and is moving along the chain, thus suggesting the presence of an electron–soliton pair.
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Fig. 5. The amount of energy at site n (hn(t)) times n and t for η = 1 and γ = 3. The
initial excitation had Pn = δn,N/2 and Qn = 0. Our results have shown the presence
of a soliton mode that propagates along the chain.

the presence of nonlinearity in the lattice that increases the elec-
tronic spread along the disordered chain. We would like to stress
that it was numerically proved that in disordered harmonic lat-
tices [26,29] the electron–phonon coupling can promote only a
sub-diffusive spreading. (2) At the strong correlation limit (γ ≥

2), our calculations suggest the appearance of an electron–soliton
pair. Our results revealed a kind of trapped electronic statemoving
along the chain. The electron–soliton pair obtained here becomes
well defined as the electron–lattice coupling is increased. We nu-
merically demonstrate the possibility of electron transport medi-
ated by solitons even in disordered nonlinear chains. Our results at
the strong correlation limit (γ ≥ 2) are in good agreementwith re-
centworks byM.G. Velarde and co-workers [7–11,17–25] concern-
ing the existence of a new particle that arises from the trapping of
an electron by a genuine solitonic mode. However, we stress that
our results were obtained in α-Fermi–Pasta–Ulam chains with cu-
bic nonlinearity, while in the case of Refs. [7–11,17–25], the elec-
tron–soliton pair was obtained by considering theMorse potential.
We hope that our paper can stimulate discussion along these lines.
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