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Abstract

In this work, we employ the inverse power method (IPM), a well-established
technique in linear algebra, to investigate the quantum dynamics of a one-
electron Hamiltonian in a unique geometric setup. Specifically, we consider a
two-dimensional N×N lattice folded into a cylindrical topology, incorporating
diagonal disorder and long-range hopping with a power-law decay. Unlike
conventional studies that consider two-dimensional planar lattices, our model
explicitly incorporates the curvature of the cylindrical geometry, enabling us
to examine its potential influence on electronic properties. By analyzing the
interplay between disorder, long-range hopping, and the system’s intrinsic
curvature, our results suggest that geometry may play a role in the localization
and transport behavior of electrons. These findings provide insights into how
geometric factors could affect quantum systems, with potential implications
for materials science and nanostructures exhibiting curved geometries.
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1. Introduction

In recent decades, the scientific community has shown a significant inter-
est in electronic transport in systems with various topologies, including lin-
ear, two-dimensional, or three-dimensional lattices. Particularly noteworthy
are quasi-one-dimensional systems, where one or two dimensions are much
smaller than the third, as they exhibit intriguing transport properties [1, 2, 3].
Similar behaviors can also arise in quasi-two-dimensional systems [4, 5, 6].

The literature contains numerous studies involving systems with cylindri-
cal geometry. For instance, in reference [7], the authors conducted a survey of
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the interaction between two cylinders in a flow environment, employing com-
putational simulations and experimental analyses. Other works, such as [8],
discuss enhancements in heat transport in nanometric alumina–copper/water
hybrid fluids flowing over stretched cylinders. Additionally, research has been
conducted to investigate the phase diagram of the ground state of the Hub-
bard model doped in a four-leg cylinder. Here, the Hubbard model theoret-
ically represents the interaction between electrons and solids, while doping
refers to the controlled introduction of charge carriers into the system under
study [9]. Reference [10] addresses the localization effect in a synthetic Hall
cylinder, where this phenomenon arises from the interaction between waves
due to disorder and dispersion, resulting in concentration in specific regions
of the system. This study explores this phenomenon in a synthetic scenario,
employing a Hall cylinder as a test platform.

Anderson Localization theory [11] is currently under extensive study. In
reference [12], the authors investigated spectral function distributions using
the correlated Anderson model. Unlike previous works that focused solely on
analyzing the mean of the spectral function, neglecting its distribution, this
study examines the distribution of the spectral function in systems with elec-
tronic correlations. In another study [13], the effect of long-range correlated
disorder on localization properties in mixed transmission lines was explored.
These lines are physical systems consisting of multiple paths through which
waves, such as electrons in conductive materials or photons in optical media,
can be transmitted. The research investigates how the presence of two in-
dependent sources of long-range correlated clutter affects wave localization
along mixed transmission lines. Recent work has explored how correlated dis-
order [14, 15] can enhance the robustness of superconductivity in certain sys-
tems [16]. The authors theoretically examined how different configurations
of correlated disorder influence the superconducting properties of materials.
Reference [17] investigated the phenomenon of localization in random fractal
lattices, complex geometric structures exhibiting self-similarity at different
scales, and examined how the combination of disorder and fractal geometry
affects the localization properties of waves or particles propagating through
these lattices.

Reference [18] delves into the localization of a lattice operator with long-
range hopping, modeled by a polynomial, in the presence of uniform electric
fields. This research investigates how the combination of long-range hopping
and uniform electric fields affects the localization properties of particles mov-
ing within the lattice. In one-dimensional systems [19], or two-dimensional
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systems, quantum transport with long-range hopping has been explored un-
der various conditions, such as different lattice geometries and magnetic field
strengths [20]. In three-dimensional systems, research has focused on study-
ing how anisotropy in long-range hopping affects the localization phenomenon
[21].

In this study, we investigate a system consisting of an N × N lattice
folded into a cylindrical geometry, incorporating diagonal disorder and long-
range hopping interactions with a power-law decay. The Hamiltonian gov-
erning the electron dynamics in this system explicitly accounts for the effects
of the curved geometry, allowing us to study the interplay between disorder,
long-range interactions, and topology. In summary, we write the standard
one-electron Hamiltonian with long-range hopping directly on a cylindrical
structure with height N and perimeter N . Our investigation reveals how
the combined effects of disorder, geometry and long-range hopping influence
localization-delocalization transitions and transport properties. These tran-
sitions, shaped by the cylindrical geometry, provide insights into the funda-
mental mechanisms governing electronic states in disordered systems. Such
insights are crucial for extending theoretical models to curved geometries and
can have broader implications for nanostructures and materials where dis-
order and topology play significant roles. The paper is organized as follows:
First, we describe the system’s topology and present the Hamiltonian that
incorporates both long-range hopping and diagonal disorder. Next, we out-
line the numerical methods employed, including the inverse power method
(IPM), to solve the quantum Hamiltonian and analyze its properties. Fi-
nally, we present our results, discuss their implications, and highlight the
novel insights gained from studying this model.

2. Model and formalism

Our model is a N × N grid in a cylinder shape. Each point i, j of this
grid represents a single electron orbital |Ri,j〉. Therefore, the radius of this
cylinder is r = N/2π. The angular distance between sites is θ = 2π/N .
Therefore, the coordinates of each site i are given by : xi,j = −r cos [(j − 1)θ],
yi,j = r sin [(j − 1)θ] and zi,j = i. We emphasize that the z-direction of the
cylinder has open boundary conditions. By using the above topology, we can
write the Hamiltonian as

H =
∑
i,j

εi,j |Ri,j〉 〈Ri,j|+
∑
ij,op

Jij,op |Ri,j〉 〈Ro,p| , (1)
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where |Ri,j〉 is the vector ket of a state at position Ri,j = (xi,j, yi,j, zi,j)
with on-site energy εi,j. These energies are taken as random and uncorre-
lated for different sites and distributed uniformly around zero within the
interval [−4, 4]. The hopping Jij,op do not fluctuate and are set in the form
Jij,op = 1/|Ri,j −Ro,p|ν , with i, j 6= o, p. We emphasize that the amount of
disorder considered here is in the same order as the bandwidth of this Hamil-
tonian. Therefore, we deal with a degree of intermediate (or almost strong)
disorder. We are interested in investigating the effect of cylinder topology
on the nature of eigenstates and the statistical properties within the present
model. We emphasize that based on the previous literature [22, 23, 24], mod-
els with power decay hopping terms exhibit an asymmetric spectrum where
the largest eigenvalue, in general, can have its localization degree influenced
by the long-range interaction. Therefore, the wanted localization properties
will appear at the last eigenstate. We can focus our main numerical tools on
finding only the largest eigenvalue and its respective eigenvector. We will do
it using the inverse power method (IPM) [25]. This procedure is an iterative
numerical technique to find the largest eigenvalue of the Hermitian matrix H.
The method can be explained as follows: i) initially, we start by considering
a general wave-state |Φ0〉 =

∑
i,j φ

0
i,j |Ri,j〉 where, for example, φ0

i,j = 1/(N2).

ii) We calculate then the following new wave-vector defined as |Φ1〉 = H |Φ0〉.
We normalized this vector as |Φ1〉 = |Φ1〉 /| |Φ1〉 |2. iii) We calculate the
new wave-state defined as: |Θ〉 = H |Φ1〉. iv) We calculate the quantity
E1
M = 〈Θ|Φ1〉. We can exchange |Φ0〉 by |Φ1〉 and repeat the procedure (i-

iv) recursively k times. The final values found (Ek
M and |Φk〉) will converge

respectively to the largest eigenvalue and his eigenstate. The convergence of
the method can be monitored using the values of EM in two subsequent itera-
tions, i.e., the iterative process will stop when |Ek

M−Ek−1
M | < 10−8. Therefore,

after applying the procedure outlined above, we will find the largest eigen-
value and the respective eigenstate |Φk〉 =

∑
i,j φ

k
i,j|i, j >. To understand the

localization properties of this state, we will explore the size dependence and
the statistical fluctuations of the participation number. The participation
number for this state is given by [26]:

Pk =

(
N∑

i,j=1

|φki,j|4
)−1

(2)

Our main calculations will be performed using the average participation num-
ber, defined as P = 〈Pk〉s, where 〈. . .〉s represents an average over a large
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number of samples s (s > 1000). We also calculate two metrics defined as:
M2 = [

√
P 2]/P and M3 = [(P 3)1/3]/P , where P 2 = 〈P 2

k 〉s and P 3 = 〈P 3
k 〉s.

For extended states, the fluctuations of the participation number are well
controlled [24] and both [

√
P 2] and [(P 3)1/3] are roughly similar to P , there-

fore, we have M2 ≈M3 ≈ 1. However, for localized states, the fluctuations of
the participation number increase as N increases and thus both M2 and M3

should also increase. We will study the dependence of P on ν and its finite
size scaling. Our research aims to determine whether or not any extended
states are present in this disordered cylinder geometry. It’s important to
note that in disordered chains (d = 1) or disordered planes (d = 2), refer-
ences [22, 23, 24] have demonstrated that extended states could be seen at
the end of the spectrum when d < ν < 3d/2. We are interested in investi-
gating the effect of cylinder topology on the nature of eigenstates and the
statistical properties within the present model.

3. Results

In our study, we employ the previously described inverse power method
on N × N networks with N up to 180 sites. During our numerical ex-
periments, we manage the numerical precision of the largest eigenvalue by
evaluating values obtained in successive iterations. The discrepancy between
eigenvalues in consecutive iterations was approximately 10−8. Our method
proved to be reasonably efficient, achieving convergence within fewer than
k = 200 iterations. Following the computation of the largest eigenvalue
and its corresponding eigenvector, we verify the maintenance of the secu-
lar equation (H |Φk〉 = Ek |Φk〉). Our tests exhibited errors smaller than
10−8 for all considered values of N . Figure 1(a) depicts the scaled participa-
tion number (P/N2) plotted against the exponent ν for various chain sizes
(N = 60, 90, 120, 150, 180). The results presented illustrate that for ν ≤ 2.80,
the rescaled participation P/N2 remains relatively constant, indicating an ex-
tended state. Conversely, for ν > 2.8, the rescaled participation decreases
with increasing N , suggesting localization of the state in this regime. In
Figures 1(b) and (c), M2 and M3 are plotted against ν for the same chain
sizes. The primary findings remain consistent: extended states are observed
for ν ≤ 2.8, while localized modes emerge for ν > 2.8.

Figure 2(a) displays the mean participation versus N for all values of ν
considered. The results indicate that for large ν, the participation shows
little dependence on N ; conversely, for small ν, the participation increases
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Figure 1: a) The scaled participation number (P/N2) versus the exponent ν for N =
60, 90, 120, 150, 180. b) M2 versus ν and c) M3 versus ν for the same cases considered in
(a).

with N . These findings agree with the results presented in figure 1. We
will employ rescaled variables (P 2/N2 × ζ2/N2) to construct a collapse of
all this data onto a single curve. Figure 2(b) illustrates this collapse of
all data onto a single curve. The parameter ζ is a characteristic length
of the system that depends on the exponent ν. For ν >> 2.8 the scaled
participation number P 2/N2 becomes a small values roughly proportional
to ζ2/N2 (thus P ≈ constant). For ν ≤ 2.8, the collapse function becomes
roughly a constant, thus P ≈ N2. The dependence of ζ on ν can be observed
in figure 2(c). The numerical error at the estimates of ζ is the order of the
symbol’s size. This figure shows two branches: the lower branch, representing
values of ν between 2.85 and 3.3, corresponds to the localized branch. The
upper branch, representing the region of ν smaller than 2.85, corresponds to
the extended branch. Let’s analyze the behavior of ζ near the transition, i.e.,
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Figure 2: a) Mean participation versus N for ν = 2.1 up to 3.3. b) A data collapse of all
data using the scaled variables P/N2 versus ζ2/N2. c) The characteristics lenght ζ versus
|ν − 2.8| for all values of ν. d) ζ versus |ν − 2.8| for ν > 2.8 (i.e., the localized branch)

suggests an exponential profile ζ ∝ e[−A
√
|ν−2.8|] with A > 0.
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for ν slightly more significant than 2.8. By examining the data around this
region, we observe that the characteristic length ζ exhibits an exponential

behavior such ζ ∝ e[−A
√
|ν−2.8|] with A > 0. Our calculations suggest that

this model contains only localized states for ν > 2.8. For ν ≤ 2.8, our
results suggest that the largest eigenvalue extends with the participation
number proportional to N2. The phase transition around ν = 2.8 exhibits
an exponential increase in the characteristic localization length. Our main
results indicate that the largest eigenvalue becomes extended for 2 < ν ≤ 2.8.
For ν > 2.8, our results suggest that all eigenstates become localized. As
the intensity of the long-range decay (ν) approaches the critical point, the
characteristic localization length seems to exhibit an exponential divergence.
The existence of a class of exponential behaviors on the characteristic size
scales is also present, for example, in models with Kosterlitz-Thouless-like
transition[27].

Compared with previous works that investigated disordered plane grids
[22], our results reveal that the transition point here (ν ≈ 2.8) is slightly
smaller than the value found there (ν = 3). One possible indication of this
difference is the cylindrical geometry. The distances between sites within the
actual topology are different from those considered in [22], which may play
a relevant role in the critical properties. However, we must be honest and
acknowledge that this discrepancy could also be an effect of finite-size effects.
Indeed, there is, of course, the possibility that if we consider N � 180, the
transition point we obtained (2.8) could shift slightly. Before concluding our
work, we would like to briefly comment on the intensity of the disorder we
have considered. We emphasize that the disorder magnitude ([−4, 4]) is of
the same order as the energy band. We also performed some experiments
with disorder widths slightly different from this range, and the results were
qualitatively the same. For weaker disorder (e.g., [−2, 2] or smaller), the
system size needs to be increased, but we were unable to do this within our
laboratory constraints. Nonetheless, we suspect that the main results will
remain consistent for weaker disorders. By ”main results,” we mean the
extended state at the largest eigenvalue for ν ≤ 2.8 and localized states for
ν > 2.8. The statistical properties of the transition around the critical point
could, however, exhibit some changes.
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4. Summary and final remarks

In this work, we applied the inverse power method (IPM) to analyze the
behavior of disordered cylindrical networks of varying sizes, with up to 180
sites. The precision of the largest eigenvalue was ensured through iterative
refinement, achieving a convergence discrepancy of approximately 10−8 be-
tween consecutive eigenvalues. The method proved highly efficient, requiring
fewer than 200 iterations for convergence. Validation against the secular
equation confirmed errors smaller than 10−8 for all considered values of N ,
demonstrating the robustness of our approach. Our analysis of the scaled
participation number (P/N2) as a function of the exponent ν revealed a clear
distinction between extended and localized states. For ν ≤ 2.80, the scaled
participation remained relatively constant, signifying the presence of extended
states. Conversely, for ν > 2.80, scaled participation decreased with increas-
ing N , indicating localization. By examining the mean participation as a
function of N , we observed a dependence on ν, with rescaled variables col-
lapsing the data onto a universal curve. The characteristic localization length
ζ exhibited exponential scaling near the critical transition point (ν ≈ 2.80),
suggesting a divergence consistent with a transition from extended to localized
states. These findings highlight the interplay between disorder, long-range
hopping, and cylindrical geometry, suggesting that extended states can ex-
ist in disordered cylindrical systems with intermediate diagonal disorder and
long-range hopping interactions. The small difference in the critical tran-
sition value (ν ≈ 2.80) compared to the value ν = 3 found in the literature
may be related to the cylindrical geometry considered in our model, which dif-
fers fundamentally from the planar structures studied previously. However,
we must also acknowledge that this discrepancy could be due to finite-size ef-
fects, as the largest system size we were able to consider in our computational
environment was N = 180. However, it is important to emphasize that in
many of the earlier studies [22] on localization properties in 2D planes with
long-range hopping (with open or closed boundary conditions), the value of
N was also on the order of 100–200 (in some cases, it slightly exceeded this
range). In all these studies, the transition was found at ν ≈ 3 (considering
system sizes similar to those used here). Therefore, the lower critical value
obtained here (ν ≈ 2.8) is possibly related to the cylindrical geometry rather
than finite-size effects.

In conclusion, this work demonstrates the application of the inverse power
method (IPM) to investigate the quantum dynamics of disordered cylindrical
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networks. Our results provide insights into the interplay between disorder,
long-range hopping, and geometric effects, revealing how these factors collec-
tively influence localization-delocalization transitions in disordered systems.
The identification of a critical transition point near ν ≈ 2.80, along with
the observed scaling behavior, deepens our understanding of the fundamen-
tal mechanisms governing electronic states in curved geometries. Looking
ahead, this study lays the foundation for future investigations into the impact
of geometry and long-range interactions on disordered systems, with potential
implications for the design of novel materials and nanostructures. By refin-
ing computational methods and exploring larger systems, we aim to further
uncover the intricate roles that curvature, disorder, and topology play in the
quantum transport properties of these systems.
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