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A B S T R A C T

Although multiparticle quantum walks have been claimed to be universal for quantum comput-
ing, fundamental issues still need further understanding, such as the formation of bound states
and their role in particle dynamics. By considering the framework of two-particle quantum
walks, we study particles with short- or long-range interactions between them and observe the
emergence of local and non-local bound states associated with these interactions. We show
that such bound states can perform competitive and cooperative influence with existing states,
sometimes resulting in unusual dynamics. In addition to revealing the optimal scenarios for
particles to perform coherent dynamics, we also show that cooperative scenarios between
bound states are responsible for robustly correlated quantum walks. Thus, coherent dynamics
of particles can be maintained even for strong interaction strengths, avoiding the nonmonotonic
behavior exhibited by systems with only on-site interaction.

1. Introduction

Quantum walks have attracted much attention recently, not only for being a versatile and highly controllable platform for
studying quantum systems but also for their promising character of performing quantum computing. Coherent superposition
and quantum interference are responsible for different dynamics from their classical analog, well-known for stochastic motion.
Understanding the role played by underlying quantum states is one of the key points, which becomes even more challenging when
more than one particle is walking simultaneously.

Quantum effects are considerably enhanced when two or more quantum walkers are simultaneously present, such that systems
with many interacting quantum walkers have been considered to perform universal and efficient quantum computation [1–3].
However, the Hilbert space describing multiparticle quantum walks grows exponentially with the linear increase in particle number
and the lattice size [4]. Thus, studies with low density of particles have been explored, presenting valuable results. The additional
power shown by quantum walks of interacting particles for distinguishing nonisomorphic strongly regular graphs is an example [5].
Algorithms based on two interacting particles can distinguish nonisomorphic graphs that non-interacting particles cannot. Such
an increase in distinguishing power is associated with spatial correlations and entanglement between particles undergoing the
quantum walk [6]. Furthermore, two-particle interacting quantum walks have also been explored for information protection and
the development of safer quantum protocols [7].

The weakening of Anderson localization in disordered or aperiodic quantum walks as a function of interaction between particles
is another scenario. Initially described by persistent currents in the presence of Coulomb interaction [8,9], this phenomenon is
recovered by two particles walking in a disordered lattice [10]. More recent studies unveil the nonmonotonic character of such
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weakening [11,12], in agreement with results reported for multiparticle systems [13–17]. A decrease in the degree of localization
has also been reported in quantum walks assisted by particle-number changes [18]. Such number-changing interactions still decrease
mixing and hitting times on binary trees, a structure of interest in quantum computing [19,20].

An essential prerequisite for validation and realization of high-fidelity quantum information processing, experimental control
ver the dynamics of quantum multi-particle systems has recently been demonstrated. Two-particle quantum walks were initially
mplemented on an integrated waveguide architecture within a discrete-time framework, which explored the quantum dynamics
f noninteracting bosonic or fermionic particles [21]. Bosonic atoms in an optical lattice were used to implement two-particle
uantum walks with tunable interactions [22]. As a result, it was reported that particles can form a stable repulsively bound
air with effective single-particle behavior and perform Bloch oscillations with a specific frequency. Analogous results have been
xperimentally achieved with photons in a waveguide array [23] and designed electric circuits [24], demonstrating the possibility
f accessing and controlling quantum states across different frameworks. This behavior, characterized by twice the fundamental
requency, corroborates the theoretical prediction in Ref. [25]. Such bound pair of particles behaving as a molecule has been shown
ither by considering discrete-time quantum walks [26] as for a Thirring walk, a quantum walk based on the two-particle sector of
quantum cellular automata [27,28].

More recent studies have explored quantum walks with three or more particles. Larger clusters of interacting particles can
xhibit fractional Bloch oscillations, with frequencies proportional to the number of particles clustered in a bound state [29].
uantum walks of interacting indistinguishable particles point out three-boson bound states as an ideal metrological state for the
recision measurement of gravitational force [30]. Studies considering different particles on the walk have reported the formation
f intercomponent bound states [31] and quantum correlations between noninteracting particles mediated by an additional third
article [32].

Despite notable advancements [33–35], there remains a need for a deeper understanding of quantum walks involving interacting
articles. Exploring the formation of bound states comprising multiple particles and their effects on particle behavior holds the
otential to establish specific quantum logical correlations and operations that might otherwise be unattainable. Furthermore, this
esearch subject is closely intertwined with crucial physics and quantum technology elements, including an in-depth survey of
undamental quantum properties such as entanglement and superposition, advancing more efficient quantum circuits, and optimizing
uantum computing at the hardware level. Our objective here is to investigate whether nonlocal interactions between particles
re responsible for the emergence of different bound states and to examine the behavior of particles in the presence of multiple
oexisting bound states. To address such questions, we consider the well-established extended Hubbard model [36] over a theoretical
ramework of two-interacting particle quantum walks. Numerical analysis shows the emergence of different bound states as we
onsider the particles interacting at a distance. Our findings advance the understanding of the interplay between available states
n a quantum walk, unveiling the existence of cooperative aspects between bound states and competitive regimes between existing
tates. As a consequence, unusual quantum correlations are established. We report that cooperative scenarios between bound states
an promote robustly correlated quantum walks, where coherent dynamics are maintained even for strong interaction strengths.
ptimal scenarios for achieving such coherent dynamics in different interparticle interaction ranges are shown.

. Model and formalism

Quantum walks have been fundamental in exploring complex quantum systems, offering a powerful tool for quantum simulation
nd algorithms [37–40]. Both frameworks, discrete- and continuous-time, have allowed for modeling a wide range of physical
henomena and addressing advanced computational challenges. Introduced by Aharonov et al. [41], discrete-time quantum walks
esign the walker advancing through discrete steps dictated by a dynamic internal degree of freedom, effectively performing as a
uantum coin. While recognizing the significant results for two-interacting particles in discrete-time quantum walks [26–28], we
onsider continuous-time quantum walks, whose connection with their classical counterpart is established based on the analogy
etween the quantum mechanical Hamiltonian and the classical transfer matrix [42]. Thus, the walker hops to adjacent nodes on a
raph following the time-dependent Schrödinger equation.

The problem involves analyzing the quantum walk of two interacting particles in one-dimensional lattices with 𝑁 sites. As a
tep towards understanding the effect of nonlocal interactions on such systems, we consider an extended version of the Hubbard
odel that considers particles with nearest-neighbor interaction in addition to on-site interaction [36]. The following Hamiltonian
escribes the system

𝐻 =
∑

𝑛,𝛼=𝑎,𝑏
[𝐽 (𝑏̂†𝑛+1,𝛼 𝑏̂𝑛,𝛼 + 𝑏̂

†
𝑛,𝛼 𝑏̂𝑛+1,𝛼) + 𝐹𝑛𝑑𝜂̂𝑛,𝛼]

+
∑

𝑛
[𝑈 (𝜂̂𝑛,𝑎𝜂̂𝑛,𝑏) + 𝑉 (𝜂̂𝑛,𝑎𝜂̂𝑛+1,𝑏 + 𝜂̂𝑛+1,𝑎𝜂̂𝑛,𝑏)]. (1)

Here, 𝑏̂𝑛,𝛼(𝑏̂
†
𝑛,𝛼) is the annihilation (creation) operator of particle 𝛼 [𝛼 ∈ (𝑎, 𝑏)] at site 𝑛. 𝜂̂ = 𝑏†𝑛,𝛼𝑏𝑛,𝛼 is the corresponding particle

number operator and 𝐽 is the single-particle tunneling amplitude between neighboring sites. The on-site and nearest-neighbor
interactions between two distinguishable bosons (or fermions with opposite spins) are denoted by 𝑈 and 𝑉 , respectively. 𝑑 is
the lattice spacing and 𝐹 is the constant force. By introducing an external force, we can utilize well-established outcomes as a
benchmark, as the specific frequency of Bloch oscillations serves as a distinctive signature of correlated particle motion resulting
from forming bound states between them [25]. An experimental setup can be achieved and precisely controlled by employing
2

ultracold atoms trapped in a sufficiently deep lattice potential [22,43]. The hopping and interaction terms depend on the depth of
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Fig. 1. A quantum-walk graph corresponding to two-interacting particles described by Hamiltonian in Eq. (1). Two discrete indices (𝑛𝑎 , 𝑛𝑏) identify each node
representing the basis states |𝑛𝑎 , 𝑛𝑏⟩. Nodes on the main (𝑛𝑎 = 𝑛𝑏) and nearest-neighbor (𝑛𝑎 = 𝑛𝑏 ± 1) diagonals account for on-site (𝑈) and nearest-neighbor (𝑉 )
interaction between particles, respectively.

the optical lattice potential and the Feshbach resonance framework, with a lattice tilt providing the necessary 𝐹 . Recent progress
in electrical circuits [24] and superconducting processors [44,45] also positions them as promising experimental frameworks.

A corresponding quantum-walk model visualizes state transitions in a quantum system as a network of interconnected nodes.
The Hamiltonian outlined in Eq. (1) can be mapped by depicting the different states as nodes on a graph, as shown in Fig. 1. In this
context, the lattice sites correspond to positions (𝑛𝑎, 𝑛𝑏) = (𝑗𝑑, 𝑘𝑑), where 𝑗, 𝑘 are elements of the sets [1, 𝑁] and N∗. One assumes
that the states representing the nodes |𝑛𝑎, 𝑛𝑏⟩ = |𝑛𝑎⟩⊗ |𝑛𝑏⟩ span the whole accessible Hilbert space  = 𝑛𝑎 ⊗𝑛𝑏 . Here, 𝑛𝑎 and
𝑛𝑏 represent the respective Hilbert spaces of particles 𝑎 and 𝑏. The resulting size of the graph is therefore 𝑁2 = 𝑁 ×𝑁 = 𝑑𝑖𝑚().
Highlighted nodes on the main (𝑛𝑎 = 𝑛𝑏) and nearest-neighbor (𝑛𝑎 = 𝑛𝑏 ± 1) diagonals account for on-site (𝑈) and nearest-neighbor
(𝑉 ) interaction between particles, respectively.

By considering 𝑓𝑛𝑎 ,𝑛𝑏 the amplitude probability of finding the particle 𝑎 at site 𝑛𝑎 and the particle 𝑏 at site 𝑛𝑏 of the lattice, we
expand the normalized state vector of the system |𝜓(𝑡)⟩ in the Wannier representation

|𝜓(𝑡)⟩ =
∑

𝑛𝑎 ,𝑛𝑏

𝑓𝑛𝑎 ,𝑛𝑏 (𝑡)|𝑛𝑎, 𝑛𝑏⟩, (2)

The evolution equations for the amplitudes 𝑓𝑛𝑎 ,𝑛𝑏 , obtained from the time-dependent Schrödinger equation, are solved numerically
using a high-order method based on the Taylor expansion of the evolution operator [25]. Thus, the state vector at a time 𝑡 is given
by applying the unitary transformation |𝜓(𝛥𝑡)⟩ = 𝛤 (𝛥𝑡)|𝜓(𝑡 = 0)⟩ recursively, where

𝛤 (𝛥𝑡) = 𝑒−𝑖𝐻𝛥𝑡∕ℏ = 1 +
𝑙𝑓
∑

𝑙=1

(−𝑖𝐻𝛥𝑡∕ℏ)𝑙

𝑙!
, (3)

is the quantum mechanical time evolution operator. The following results were taken by using 𝛥𝑡 = 0.05, and 𝑙𝑓 = 20. This cutoff
was sufficient to keep the wave function norm conservation (|1 −∑

𝑛𝑎 ,𝑛𝑏
|𝜓𝑛𝑎 ,𝑛𝑏 |

2
| ≤ 10−15) along the entire time interval considered.

Furthermore, we use dimensionless units 𝐹∕𝐽 , 𝑈∕𝐽 , 𝑉 ∕𝐽 , and set ℏ = 𝐽 = 𝑑 = 1.
Since the absence of net displacement of the wave-packet centroid is achieved for an initial Fock state with the particles occupying

a single site [46,47], we consider an initial Gaussian wave packet with width 𝜎

⟨𝑛𝑎, 𝑛𝑏|𝜓(𝑡 = 0)⟩ = 1
𝐴
𝑒−[(𝑛𝑎−𝑛

0
𝑎)

2+(𝑛𝑏−𝑛0𝑏 )]∕4𝜎
2
, (4)

centered at the initial positions (𝑛0𝑎, 𝑛
0
𝑏), with 𝑛0𝑎 = 𝑁∕2 and 𝑛0𝑏 = 𝑁∕2. 𝐴 is a normalization factor. Preliminary studies have

indicated no notable variations when investigating system sizes ranging from 𝑁 = 100 to 𝑁 = 250. To maintain wave function
norm conservation and mitigate edge effects within a viable computational effort, we have opted for lattices with 𝑁 = 150 for
the subsequent analysis. Through the above-described protocol, we computed typical quantities that can bring information about
particle dynamics, as will be detailed below.

3. Results

We start following the time evolution of the wave-packet centroid associated with each particle, defined as

𝑛𝑖(𝑡) =
∑

𝑛𝑎 ,𝑛𝑏

𝑛𝑖|𝑓𝑛𝑎 ,𝑛𝑏 (𝑡)|
2, 𝑖 = 𝑎, 𝑏 (5)

Due to the symmetry of the initial state and interaction Hamiltonian, one has that 𝑛𝑎(𝑡) = 𝑛𝑏(𝑡). Using a lattice with 𝑁 = 150 sites,
𝜎 = 1, and 𝐹 = 0.5, we investigated the influence of non-local interaction by evaluating different interaction strengths between
3
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Fig. 2. Time-evolution of wave-packet centroid and the respective Fourier transform for systems with distinct interaction strength between particles: (a) 𝑈 = 0
and 𝑉 = 0; (b) 𝑈 = 4 and 𝑉 = 0; (c) 𝑈 = 12 and 𝑉 = 0; (d) 𝑈 = 4 and 𝑉 = 𝑈∕3 and (e) 𝑈 = 12 and 𝑉 = 𝑈∕3. The oscillatory pattern developed by systems with
on-site and nearest-neighbor interactions shows a predominant scenario of coherent hopping even for strong interaction strength, differing from the behavior
exhibited by systems with only on-site interactions.

particles. Here, we consider a nearest-neighbor interaction to mimic a screening of the Coulomb interaction by orbitals, known
to decrease with distance [48]. Thus, we focus on 𝑉 = 𝑈∕3 without loss of generality for 𝑉 < 𝑈 . To evaluate the contribution
arising from this non-local interaction, we use as reference the case with only on-site interaction (𝑉 = 0.0) [25]. Such a scenario is
shown in Fig. 2a-c for 𝑈 = 0.0, 4.0, 12.0, respectively. We observe all centroids exhibiting an oscillatory pattern consistent with Bloch
oscillations. For 𝑈 = 0.0, the system is composed of non-interacting particles. The respective Fourier transform [panel with 𝑛𝐼 (𝜔)]
clearly shows a predominant oscillation frequency (𝜔 = 𝐹 ) consistent with particles performing independent hopping [49,50].
An oscillatory pattern with a dominant frequency close to 𝜔 = 2𝐹 is achieved for 𝑈 = 4.0, which corroborates the scenario of
particles hopping coherently [22,23,25]. The wave-packet component corresponding to bound states exhibits signatures of dynamical
evolution typical of a single particle composed of the particles pair. The effective local potential felt by this composed particle is
proportional to 2𝐹𝑛𝑑, thus explaining the observed frequency doubling (𝜔 = 2𝐹 ). However, the 𝜔 = 𝐹 frequency is reamplified and
becomes predominant for strong enough interactions (here 𝑈 = 12.0). This nonmonotonic behavior demonstrates the competitive
character between the existing bound and unbound states. As the interaction increases further, the high energy cost for double
occupancy renders coherent particle hopping increasingly unfavorable. Thus, the independent hopping of particles (signaled by the
frequency 𝜔 = 𝐹 ) becomes predominant over the coherent hopping (signaled by the frequency 𝜔 = 2𝐹 ). In Fig. 2d–e, we examine a
system with particles subject to on-site and nearest-neighbor interactions under the same settings as the previous reference scenario.
Differing from the reference scenario, we observe a predominant oscillatory pattern with a frequency close to 𝜔 = 2𝐹 for both 𝑈 = 4.0
and 𝑈 = 12.0. Considering the emergence of nearest-neighbor bound states due to nearest-neighbor interaction [51], this behavior
suggests a cooperative interaction between the different existing bound states, contributing to the predominantly coherent hopping
of particles even when they are under strong interaction strengths.

To understand the role played by the nearest-neighbor interaction in sustaining the coherent particle hopping for strong
interactions, we explored the long-time average of the double occupancy probability (DOP), probability of occupying neighboring
sites (NOP), and next-nearest-neighboring occupancy probability (NNOP). These quantities are computed by using the same lattice
size of 𝑁 = 150 sites, 𝜎 = 1, and 𝐹 = 0.5 employed before. In Fig. 3, we show such occupancy probabilities as a function of 𝑈 ,
both for 𝑉 = 0.0 and 𝑉 = 𝑈∕3. Although the particles exhibit independent hopping in the absence of interaction, the external force
makes them remain trapped over a finite segment. Thus, we observe non-null values of occupancy probabilities even in the absence
of particle–particle interactions. As the interaction is turned on, correlated dynamics of particles are observed. The DOP growth
4
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Fig. 3. The time average of occupancy probability versus on-site interaction strength 𝑈 for quantum walks in which particles present (a) only on-site interaction
and (b) on-site and nearest-neighbor interaction. The competitive character between bound and unbound states is responsible for an optimal scenario for the
coherent dynamics of particles occupying the same site around 𝑈 = 4. Such coherent hopping is supported for strong 𝑈 by the emergence of nearest-neighbor
ound states, now with particles occupying neighboring sites.

hows the particles predominantly occupying the same site. However, we observe a nonmonotonic behavior in such a correlated
ynamic as 𝑈 increases even more. Such behavior is associated with the emergence of on-site bound states and the competitive effects
etween them and the unbound states. The first ones, which favor coherent hopping, cover the energy range 𝑈 ≤ 𝐸 ≤

√

16 + 𝑈2 for
systems with only on-site interaction and 𝑈 ≤ 𝐸 ≤ 𝑉 +

√

16 + (𝑈 − 𝑉 )2 for systems with on-site and nearest-neighbor interaction
between particles [25,51]. The others cover the energy range −4 ≤ 𝐸 ≤ 4 and correspond to the states of uncorrelated particles.
The emergence of 𝑈 favors the influence of bound states on particle dynamics as the interaction increases. However, the sub-band
of bound states separates and moves away from the band of unbound states as the interaction becomes very strong [52]. This
scenario favors the predominance of unbound states over particle dynamics. As a result, optimal coherent dynamics are achieved
with intermediate interaction strength, leading to Bloch oscillations with both particles predominantly occupying the same sites.
This occurrence corresponds to the disentanglement between bound and unbound state sub-bands.

While the described scenario elucidates the reamplification of independent oscillations (𝜔 = 𝐹 ) for strong interactions, as depicted
n Fig. 2c, the behavior of systems with both on-site and nearest-neighbor interactions requires explanation. In Fig. 3b, we observe

slower decrease of DOP and the upward trend of NOP under strong particle–particle interactions. The first observation occurs
ecause of the widening of bound states sub-band in the function of 𝑉 [51]. The second one is consistent with the emergence
f nearest-neighbor states covering the range 𝑉 ≤ 𝐸 ≤ 𝑉 + 4∕𝑉 [51]. These states are responsible for a coherent dynamic in

which particles occupy neighboring sites. As with on-site bound states, a competitive character promotes the relevance of these
states when they are close to detaching from the main band. Such behavior consolidates a cooperative effect between on-site and
nearest-neighbor bound states, which favors the maintenance of a coherent dynamic of particles signaled by predominant frequency
𝜔 = 2𝐹 for strong interactions in Fig. 2e.

As an additional analysis, we explore in Fig. 4 quantum walks in which the on-site interaction is negligible (𝑈 = 0) and particles
interact only when they are on neighboring sites. Such a system is consistent with Ref. [30] and can be implemented with the
current technology of ultracold atoms [22,53]. Fig. 4 shows centroids and the respective Fourier transforms for (a) 𝑉 = 4 and
(b) 𝑉 = 12, considering the same lattice size of 𝑁 = 150 sites, 𝜎 = 1, and 𝐹 = 0.5 employed before. We observe coherent
Bloch-oscillating quantum walks, signaled by the predominant frequency 𝜔 = 2𝐹 . Thus, it becomes evident that non-local bound
states promote coherent hopping of particles. Unlike the systems where the particles have only on-site interaction, now we observe
particles predominantly occupying nearest-neighbor sites. Such an aspect is shown by the behavior of NOP in Fig. 4c. We also
note the coherent dynamics (frequency doubling) predominating even for strong interaction strengths (here 𝑉 = 12). This scenario
s consistent with a higher coherent hopping probability and a slower decay as the interaction between particles is strengthened
compare Fig. 2a to Fig. 4c). Despite this difference, the competitive character between bound and unbound states is still observed,
resent in the nonmonotonic behavior of NOP and the lower amplitude modes in n𝑖(𝜔).

Going beyond the scenario with on-site and nearest-neighbor interactions, we investigated the quantum walks with long-range
nteraction between particles. The following Hamiltonian describes the system:

𝐻 =
∑

𝑛,𝛼=𝑎,𝑏
[𝐽 (𝑏̂†𝑛+1,𝛼 𝑏̂𝑛,𝛼 + 𝑏̂

†
𝑛,𝛼 𝑏̂𝑛+1,𝛼) + 𝐹𝑛𝑑𝜂̂𝑛,𝛼]

+
∑

𝑛𝑎 ,𝑛𝑏

𝑈𝑒−|𝑛𝑎−𝑛𝑏|∕𝜉 𝜂̂𝑛,𝑎𝜂̂𝑛,𝑏. (6)

Just like before, 𝑏̂𝑛,𝛼(𝑏̂
†
𝑛,𝛼) is the bosonic annihilation (creation) operator at site 𝑛 of two distinguishable particles [𝛼 ∈ (𝑎, 𝑏)], and

̂ = 𝑏†𝑛,𝛼𝑏𝑛,𝛼 is the corresponding particle number operator. 𝐽 denotes the single-particle tunneling amplitude between neighboring
sites. 𝑈 is the strength of the particle–particle interaction at a given site 𝑛 when both occupy the same position. This strength decays
5

exponentially with the distance between the particles |𝑛𝑎 − 𝑛𝑏|.
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Fig. 4. (a–b) Time-evolution of wave-packet centroid and the respective Fourier transform for quantum walks in which particles present only nearest-
neighbor interaction show coherent hopping of particles achieved by the nearest-neighbor bound states. (c) The time average of occupancy probability versus
nearest-neighbor interaction strength 𝑉 unveils that such coherent dynamics are dominated by particles occupying neighboring sites.

Fig. 5. The time average of (a) double occupancy probability, (b) probability of occupying neighboring sites, and (c) next-nearest-neighboring occupancy
probability computed for different 𝑈 strengths and interaction range 𝜉. The optimal 𝑈 interaction strength for displaying double occupancy probability increases
as 𝜉 increases, while the ascendance of occupation probability at neighboring sites arises for smaller and smaller interactions. Such behavior signals changes in
the cooperative character between the bound states as we increase the interaction strength.

Employing the identical formalism and parameter sets previously applied for the time evolution, we probe the influence of the
interaction range 𝜉 on the Bloch-oscillating dynamics of two particles. We keep the lattice size, initial wave-packet width, and 𝐹
the same as Figs. 2–4 and compute the occupancy probabilities DOP, NOP, NNOP in the function of interaction strength 𝑈 . We
6
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Fig. 6. (a-b) Fourier transform obtained from the time-evolution of wavepacket centroid. (a) For small 𝜉, competition between bound and unbound states
akes the coherent hopping of particles perform better for intermediate interaction strength. (b) As 𝜉 increases, the coherent hopping in which particles occupy
eighboring sites also influences the dynamics of particles. Such a cooperative effect of bound states dominates the particle dynamics even for strong interactions.
c) Optimal interaction strength for coherent particle dynamics increases with 𝜉.

tart by exploring the change in the interaction range 𝜉 = 0.5, 1.0, 2.0, 4.0. In Fig. 5a we observe a slower decaying rate of DOP
as the interaction range increases. Furthermore, the optimal 𝑈 interaction strength for displaying double occupancy probability
increases as 𝜉 increases. On the other hand, the ascendance of occupation probability at neighboring sites (NOP) arises for smaller
and smaller interaction strengths as we increase the interaction range 𝜉. As double occupancy and nearest-neighbor occupancy were

ore energetically favorable, NNOP remains much less sensitive to interaction range 𝜉 than the DOP and NOP.
Optimal coupling signals the best scenario of particles moving coherently, with the least influence of unbound states or

ompetitive effects. Such features are studied in Fig. 6a-b, where we present the Fourier transform obtained from the time evolution
f the centroid for configurations around the interaction of optimal coupling. For small enough 𝜉, the system behaves as if it has only
n-site interaction. We observe a nonmonotonic character in the coherent hopping of the particles. The competition between bound
nd unbound states previously reported makes such coherent dynamics of particles perform better for intermediate interaction
trength. As 𝜉 increases, this nonmonotonic behavior is no longer observed. With the emergence of non-local bound states, the
oherent hopping in which particles occupy neighboring sites also influences the dynamics of particles. Fig. 6c shows the optimal
nteraction strength for coherent particle hopping increasing with 𝜉, corroborating findings in Fig. 5. Except for very small 𝜉, 𝑈𝑜𝑝

symbolizes the interaction strength from which coherent hopping becomes clearly predominant.
A notable behavior observed in Fig. 6 is the lack of non-coherent modes in the Fourier spectra as stronger interaction strengths

are considered. Such behavior suggests a cooperative scenario consistent with the emergence of additional bound states. Indeed,
long-range interaction gives rise to other bound states, as we report in Fig. 7. Here, we have applied a numerical diagonalization
of the Hamiltonian (6) to an open chain with 𝑁 = 120 sites in the absence of electric field and computed the normalized density
of states (𝐷𝑂𝑆) versus energy (𝐸). Computational limitations have prevented us from reaching larger sizes. However, preliminary
studies revealed no significant changes in 𝐷𝑂𝑆 when exploring lattices with 𝑁 = 90,100, and 110. We explored the increase
n the 𝑈 interaction strength and the 𝜉 interaction range, considering 𝜉 = 0.5, 1.0, 2.0, 4.0. For 𝜉 = 0.5, we observe a sub-band
merging from the main band as the interparticle interaction 𝑈 increases. This sub-band decouples around 𝑈 = 4 and moves away

from the main band as the interaction increases further. This behavior is consistent with characteristics reported in analytical [52]
and numerical [25] studies for systems with solely on-site interactions, reinforcing previous findings for sufficiently small 𝜉 values
(Fig. 6). The emergence of distinct sub-bands of bound states is evident as we consider a more extended interaction range, such
as 𝜉 = 1.0. The first one matches with on-site bound states, while the latter is compatible with nearest-neighbor bound states.
More bound states sub-bands emerge when considering an interaction range 𝜉 even longer (see Fig. 7c–d). The third sub-band
corresponds to bound states where particles occupy the next-nearest-neighbors, and so on. The emergence of these other sub-bands
and the cooperative effect between the existing bound states are consistent with preserving coherent hopping for sufficiently strong
interactions in Fig. 6. We observed the energy range of bound-states sub-bands varying as the interaction range 𝜉 changes. As 𝜉
increases, the sub-bands emerge from the main band for smaller interaction strengths, which corroborates the behavior of NOP in
ig. 5. Results also suggest a broadening of the on-site bound states sub-band as 𝜉 increases, thus modifying the competitive scenario
etween bound and unbound states. Such behavior aligns with the increase in the optimal interaction for observing coherent hopping
hown in Fig. 6, as well as the behavior of DOP in Fig. 5.
7
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Fig. 7. The normalized density of states (DOS) versus energy (𝐸) for distinct interaction strengths (𝑈 ), by considering the interaction range (a) 𝜉 = 0.5, (b)
𝜉 = 1.0, (c) 𝜉 = 2.0 and (d) 𝜉 = 4.0. For 𝜉 small enough, we observe the emergence of only a sub-band of bound states as 𝑈 increases. This behavior is close
to systems with particles exhibiting only on-site interaction. As the interaction range 𝜉 increases, we observe the existence of other sub-bands of bound states,
corroborating previous results regarding the cooperative effect of bound states.

4. Final remarks

In this work, we consider a system of interacting particles and study how the coexistence of local and non-local bound
states influences particle dynamics. We explore two-particle quantum walking in tilted optical lattices, a framework with proven
experimental viability and already-known dynamic signatures. We study systems with short- and long-range interactions between
particles and observe the emergence of bound states directly associated with such interaction. Results show distinct correlated
dynamics associated with dominant quantum states. On-site bound states from on-site interactions are responsible for correlated
dynamics in which particles preferentially occupy the same site. Nearest-neighbor bound states lead to correlated dynamics in
which particles preferentially occupy neighboring sites, and so on. The existing bound states are responsible for competitive and
cooperative effects, which may give rise to unusual dynamics. We display the optimal scenarios for particles to perform coherent
dynamics and how they change as a function of the interaction range. Thanks to the cooperative aspects between bound states, the
nonmonotonic behavior exhibited by systems with only local interaction gives way to robustly correlated quantum walks, where
coherent hopping is sustained even for strong interparticle interactions. As a result, our findings enhance comprehension of how
available states in a quantum walk interplay with the underlying quantum correlations.

Beyond cold atoms trapped in optical lattices [22], which offer the versatility to combine multiple controls and measure-
ments [43], photonic lattices [23,54], designed electric circuits [24], and superconducting processors [44,45] can map the dynamics
of two interacting particles. This scenario positions them as promising frameworks for potential experimental investigations. To
conclude, it would be interesting to have these results derived from an analytical framework, which would bring valuable new
insights into the cooperative effects between bound states and quantum walks of particles hopping coherently.
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