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a b s t r a c t

Within a tight-binding Hamiltonian approach, we study the dynamics of one-electron
wave packets in a twisted ladder geometry with adiabatic electron–phonon interaction.
The electron–phonon coupling is taken into account in the time-dependent Schrödinger
equation through a cubic nonlinearity. This physical scenario incorporates several relevant
ingredients to study the electronic wave packet dynamics in DNA-like segments. In the
absence of nonlinearity, a random sequence of nucleotides pairs makes the wave packets
remain localized, according to the standard picture of the Anderson localization. However,
when the electron–phonon interaction is turned on, Anderson localization is suppressed
and a subdiffusive regime takes place. Further, we show that the wave packet trapping can
be controlled by an external field perpendicular to the helicity axis of the double-strand
chain.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The remarkable idea of using organicmolecules for building electronic components can be traced back to 1974 [1]. Biolog-
icalmolecules have all the basic properties necessary for the assembly of nanoscale electronic devices [2]. They can transport
electric current, transfer molecules from one location to another, and produce cascades that can be used for amplification of
an optical or electronic signal. All of these properties can be applied to electronic switches, gates, storage devices, biosensors
and biological transistors, to name just a few.

Specifically, the discovery that DNA can conduct an electrical current has made it an interesting candidate to overcome
the limitations that classical silicon-based electronics is facing presently [3]. Although the binding of a single DNAmolecule
to an electrode is a tough job, and difficulties also arise in validating whether the two are actually connected, the effort pays
off because DNA has been shown to act as an insulator [4,5], a semiconductor [6,7], a conductor [8], or even a proximity-
induced superconductor depending on its sequence, length, orientation and environment [9]. Besides, individual DNA
molecules are very suitable for producing a new range of devices that are much smaller, faster and more energy efficient
that the present semiconductor-based one. In fact, DNA offers a solution to many of the hurdles that need to be overcome. It
is one of the best nanowires in existence, and has the important properties to self-assemble and to self-replicate, making it
possible to produce nanostructures with a precision that is not achievable with the classical silicon-based technologies [10].
Furthermore, although the long-range correlations could be responsible for the effective electronic transport at specific
resonant energies of finite DNA segments, much of the anomalous spread of an initially localized electron wave packet
can be accounted for by short-range pair correlations on DNA. This finding suggests that a systematic approach based on
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the inclusion of further short-range correlations on the nucleotide distribution can provide an adequate description of the
electronic properties of DNA segments. Within the DNA transport properties context two formalisms are frequently used:
ab initio calculations [5,11–14] and effective Hamiltonian models [15–23]. The ab initio formalism can provide detailed
information about the electronicmolecular levels and charge distribution. However it is currently limited to shortmolecules
due to the large computational cost [23]. From the other side, effective Hamiltonian approaches, in spite of being much less
detailed, allow for addressing systems of realistic lengths and can provide additional information regarding the long distance
transport properties [15–26].

The presence of disorder in DNA-based molecules can be either due to their intrinsic nature (imperfections of the
structures or random sequences of nucleotides) or could have originated from a random environment. Whenever disorder
is involved, Anderson localization of quasiparticles states comes into play [27]. In three dimensions (3D), the states at the
center of the quasiparticle band remain extended if the magnitude of the disorder is smaller than the bandwidth while
the other states (in the neighborhood of the band edges) turn out to be exponentially localized. This implies the existence
of two mobility edges, which separate the phase of extended states from the localized ones [28]. On the other hand,
uncorrelated disorder of any magnitude causes localization of all one-particle eigenstates in one dimension (1D) [29] and
two dimensions (2D) [30].

In low-dimensional systems, the effect of nonlinearity seems to be dominant over the role played bydisorder. Considering
a discrete nonlinear Schrödinger and quartic Klein–Gordon equations with disorder, it was proved that the second moment
and the participation number of the wave packet do not diverge simultaneously [31,32]. The spreading of an initially
localized wave packet in a 1D discrete nonlinear Schrödinger lattice with disorder was also recently studied, and it
was observed that Anderson localization is suppressed and a subdiffusive dynamics takes place above a certain critical
nonlinearity strength [33]. Moreover, analytical and numerical calculations for a reduced Fermi–Pasta–Ulam chain indicate
that energy localization does not require more than one conserved quantity [34]. From the experimental point of view,
investigations were made to clarify the interplay between disorder and nonlinearity, by means of the evolution of linear
and nonlinear waves in coupled optical waveguides patterned on an AlGaAs substrate. It was also observed that nonlinear
perturbations enhance localization of linear waves while inducing delocalization of the nonlinear ones [35].

The aim of this work is to push this field further by investigating the electronic wave packet dynamics in a twisted
ladder geometry. Nonlinearity, disorder and correlations will be considered once these are particularly important for
the description of DNA-like segments. A systematic ab initio study of the DNA conformational modes and their possible
interactionswith the electronmotionwas provided in Ref. [14]. The effective Hamiltonian for distinct kinds of DNA polarons
was also presented. Here, we consider the electron–phonon interaction within the adiabatic approximation proposed in
Refs. [36–40]. The effective third order electron–phonon contribution was pointed as a possible mechanism to break-
down the localization rules in disordered chains [33,39]. In addition, we study the competition between nonlinearity
and a perpendicular electric field. Our results suggest that disordered ladder models, with a topology similar to effective
Hamiltonian models of DNA molecules [15–23] display a diffusive-like spread of the electronic wave packet induced by
nonlinearity. Further, we numerically demonstrate that this wave packet spreading is suppressed by an external electric
field applied perpendicular to the ladder helicity axis.

2. Model and formalism

Our calculationsmake use of an adiabatic electron–phonon interactionwithin an effective nonlinear tight-bindingmodel
Hamiltonian describing an electron moving in a twisted ladder geometry with correlated disorder. This structure mimics
the topology and the interstrand correlations presented in DNA segments. Considering a single orbital per site and nearest-
neighbor interactions, the time dependent Schrödinger equation (with h̄ = 1) is given by [36,37]

i
dψjs

dt
=


ϵjs + χ |ψjs|

2ψjs + V‖


ψj+1 s + ψj−1 s


+ V⊥ψjs̄. (1)

Here s = ±1 labels each strand, and s̄ = −s indicates the complementary one. The index j = 1, . . . ,N runs over the sites
along one of the strands, coupled by the hopping parameter V‖. In the DNA molecule such hopping amplitude is effectively
mediated by side chains of sugar-phosphate. Also, V⊥ is the hopping parameter between complementary sites on each
strand, and χ is the coupling constant of the local electron–phonon interaction.

We consider an electron initially localized at the orbital |j0 s0⟩, namely we take the initial conditionψjs(t = 0) = δjj0δss0 .
We solved the set of nonlinear coupled differential equations using the tenth-order Adams–Bashforth–Moulton method
initialized by the Dormand–Prince Runge–Kutta method of order eight with time step 1t = 0.005. The time step 1t was
found to be enough to obtain accurate results for the parameter set used in the simulations. We are particularly interested
in the square root of the mean-square displacement σ(t) and the time-dependent participation function ξ(t) defined by

σ(t) =

−
j,s


(j − j0)2 + (s − s0)2


|ψjs(t)|2, (2)

ξ(t) =

−
j,s

|ψjs(t)|4
−1

, (3)
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Fig. 1. Log–log plot of the square root of the mean-square displacement σ(t) for several values of the nonlinear coupling constant χ . At long times
σ(t) ∝ t0.15(2) , irrespective to the nonlinear strength.

as well as the return probability R(t) = |ψj0s0(t)|
2. The participation function ξ(t) gives an estimate of the number of sites

over which the wave packet is spread at time t . In the long-time regime, its scaling behavior can also be used to distinguish
between localized and delocalized wave packets. In addition, in a regime of strong localization, the probability of finding
the particle at the initial site at long times R∞ ≡ limt→∞ R(t) is always nonzero [40].

We constructed uncorrelated random sequences containing four distinct values of the on-site potentials. In this sense,
it mimics the sequence of four nucleotides present in DNA segments, namely adenine (A), guanine (G), thymine (T),
and cytosine (C). Further, we considered the same fraction of each nucleotide found in the first sequenced human
chromosome (Ch22), entitled NT011520, whose number of nucleotides is about 3.4 × 106 [41]. For the on-site energies in
one of the strands, we used the representative values: ϵA = 8.24, ϵT = 9.14, ϵC = 8.87, and ϵG = 7.75, all units in eV [42].
The energies of the other strand were generated by considering the interstrand nucleotide correlations which imposes that
only base pairs CG and AT are allowed. In DNA molecules, the intrastrand hopping amplitude is smaller than the disorder
width due to the variability of the on-site energies. The interstrand coupling mediated by the hydrogen bonds between
complementary sequences is weaker than the intrastrand coupling. In order to reproduce some specific features of real DNA
molecules, it would be important to consider both inter- and intra-strand hopping variability. Here wewill concentrate on a
tight-binding ladder model with V‖ = 1.0 eV and V⊥ = 0.5 eV. Although the following results were obtained for the above
particular parameter set motivated by previous effective Hamiltonian descriptions of DNA-segments, the overall physical
properties do not depend on a specific choice for the Hamiltonian parameters.

3. Results

We start with a wave packet localized at the guanine closer to the center of the double-strand molecule. In order to
avoid finite-size effects, we used large segments with N = 1.000 base-pairs. We average the numerical calculations over
20 distinct segments to account for configurational variability. Fig. 1 shows the mean-square displacement σ(t) for several
values of the electron–phonon coupling constant χ . The values of log10(σ ) were averaged over 20 realizations of disorder.
In the absence of nonlinearity (χ = 0) the wave packet spreads over a segment of finite length. This is the well-defined
Anderson localization regime in low-dimensional systems with uncorrelated disorder.

For nonlinear double-strand chains we observe a subdiffusive regime σ ∝ t0.15(2). The exponent obtained here is in
perfect agreement with the numerical calculations for 1D nonlinear chains with uncorrelated disorder [33]. However, we
observe two distinct trends in the regime of weak and strong nonlinearities. For χ < 3 eV, the wave packet width in
the asymptotic sub-diffusive regime increases as χ is increased. On the other hand, a reverse trend sets up for stronger
nonlinearities. Although thewave packetwidth remains subdiffusive in these two regimes, such nonmonotonic dependence
on the nonlinearity points to distinct dynamical properties, as we will explore below.

In Fig. 2 we show the time dependence of the participation function ξ(t) computed considering the same number
N = 1.000 of base-pairs. The nonlinear coupling ranged from χ = 0.5 up to 8 eV. As one can see, the wave packet displays
a subdiffusive dynamics in the regime of weak nonlinear couplings (χ < 3 eV), in which the time dependent participation
function behaves like ξ ∝ (t)0.25(2). However, the participation function remains finite in the regime of strong nonlinearities.
Therefore the divergences of thewave packetwidth and participation number are not simultaneous. This feature had already
been pointed out in disordered nonlinear systems [31]. Therefore, the regime of weak nonlinearity corresponds to a true
delocalized phase for which the wave packet spatial extension diverges as the wave packet continuously spreads over the
system. For strong nonlinearities, the wave packet extension remains finite although the secondmoment of the distribution
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Fig. 2. Log–log plot of the time dependent participation function ξ(t) for several values of the nonlinear coupling χ . At moderate electron–phonon
couplings the participation function displays clear signatures of an asymptotic dynamics with ξ(t) ∝ t0.25(2) . For large couplings (χ > 3 eV) the
participation function saturates, thus indicating spatial localization of the wave packet.

Fig. 3. Asymptotic return probability Rt → ∞ as a function of the nonlinear coupling χ . For 0 < χ < 2.5–3.0 eV, the asymptotic return probability
approaches zero as the system size increases, in agreement with the subdiffusive regime of the participation function shown in Fig. 2. For larger
nonlinearities, the return probability remains finite and size independent. The inset shows the rescaled return probability NR∞ . The collapse of data at
small nonlinearities signals the 1/N scaling of R(t → ∞) in the partially trapped regime.

continue to increase sub-diffusively. This feature is related to a partial self-trapping of the wave packet while the rest
subdiffuses [32].

In order to have a more precise estimate of the critical nonlinearity delimiting the regimes of delocalized and partially
self-trapped wave packets, we plot in Fig. 3 the return probability at very long times Rt → ∞ versus the strength of the
nonlinear coupling χ (after reflection at the chain boundaries). A clear transition is signaled at χc ≃ 2.5–3.0 eV. Below χc
the return probability decays as 1/N as stressed in the inset. For χ > χc it becomes size independent. This result gives
further support to the above claims, namely:

(i) For weak nonlinear couplings χ < χc , the asymptotic return probability Rt → ∞ approaches zero, in agreement with
the delocalized subdiffusive dynamics exhibited by both the wave packet width and participation function.

(ii) For strong nonlinear couplings χ > χc we observe a localized regime Rt → ∞ ≠ 0 corresponding to the self-trapping
phenomenon already reported in 1D nonlinear chains. However, due to the subdiffusive growth of the wave packet
width, such self-trapping is only partial [36,40].

Before finishing, we consider the effect of an external field E applied perpendicular to the ladder main axis. In this case, the
helix conformation of the strands becomes important. This is equivalent to taking into account a gate voltage drop across
the double helix. A 10-base-pair full-twist period will be considered which is similar to the one exhibited by the B form of
the DNA. Neglecting the difference betweenmajor andminor grooves, the site energies under the gating electric field E will
be: [23]ϵjs = ϵjs + Fs cos(2π j/10), (4)
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Fig. 4. (a) σ(t) and (b) ξ(t) as a function of time at χ = 1 and several values of F , indicated on the labels. Notice that a partial self-trapping is attained
at strong fields, signaled by the subdiffusive wave packet width spread together with a saturated participation function. (c) Asymptotic return probability
R(t → ∞) versus F , indicating that the partial self-trapping takes place for fields F > 0.5 eV. The inset shows the scaled return probability NR∞ which
exhibits a data collapse in the delocalized regime.

with ϵjs being the site energy at zero field. Also, F is the perpendicular gating energy, defined by F ≡ eEr where r ∼ 1 nm is
the strand radius. In Fig. 4(a) and (b) we plot the square root of the mean-square displacement σ(t) and the time dependent
participation function ξ(t) as a function of time when the coupling constant of the local electron–phonon interaction
χ = 1 eV, for several values of F . For this value of χ the wave packet spreads continuously over the lattice in the absence
of an external field, with both the wave packet width and participation function growing subdiffusively. The results show
that the gating electric field reduces the wave packet spreading. However, the subdiffusive character of both wave packet
width and participation function seems to remain for weak fields. This feature can be associated with the effective increase
of the disorder width introduced by the perpendicular external field. On the other hand, the external field has a strong
impact in the self-trapping phenomenon. Fig. 4(b) clearly shows that the participation function saturates at stronger fields
even though the wave packet width still keeps its subdiffusive character. Fig. 4(c) depicts the asymptotic return probability
versus F . While the return probability vanishes in the absence of the external field, a finite fraction of the electronic wave
packet becomes trapped on its initial location when the perpendicular external field exceeds a critical value of the order of
Fc = 0.5 eV. The fraction of the electronic density that becomes trapped increases as the electric field is increased.

4. Conclusions

In summary, we studied the dynamics of an electron wave packet in a double-stranded chain with a random sequence of
on-site potentials and a cubic nonlinearity associated with an adiabatic electron–phonon interaction. By using the discrete
nonlinear Schrödinger equation we include the influence of the lattice vibrations on the electron dynamics. To incorporate
some ingredients of DNA-like segments,we considered a random four-valued sequence of on-site energies tomimic adenine,
guanine, thymine, and cytosine nucleotides. The energies of the second strandwere generated by considering the interstrand
nucleotide correlations, which imposes that only base pairs CG and AT are allowed. We followed the time evolution of
an electron initially localized at a single guanine orbital. In the absence of nonlinearity the system shows a well defined
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Anderson localization regime. However, when the electron–phonon coupling is turned on, a subdiffusive regime arises in
the regime of small nonlinearities and the electronic wave packet completely escapes from its initial location. In the regime
of strong nonlinearities, a partial self-trapping emerges. In this regime a finite portion of the wave packet remains trapped
near its initial position while the other part spreads subdiffusively. In addition, we consider the helix conformation of the
ladder under the influence of a perpendicular gating field. Our calculations indicate that the electric field reduces the wave
packet spreading. Actually, the external field is also able to trap a finite fraction of the electronic density near its initial
location, a phenomenon that is controlled by the intensity of the external perpendicular field. It is important to stress that
field-controlled devices play a mayor role in conventional electronics. The mechanism reported here for trapping electrons
in helical double-strands opens the possibility of tailoring new field-controlled nanoscale bio-electronic devices. We hope
that the present work will stimulate further studies on the transport properties in ladder geometries and the interplay of
nonlinearity, geometry and field-effects.
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