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a b s t r a c t

In this work we study numerically the dynamics of an initially localized wave packet in
one-dimensional disordered chains with saturable nonlinearity. By using the generalized
discrete nonlinear Schrödinger equation, we calculate two different physical quantities as
a function of time, which are the participation number and the mean square displacement
from the excitation site. From detailed numerical analysis, we find that the saturable non-
linearity can promote a sub-diffusive spreading of the wave packet even in the presence
of diagonal disorder for a long time. In addition, we also investigate the effect of the satu-
rated nonlinearity for initial times of the electronic evolution thus showing the possibility
of mobile breather-like modes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The works by P.W. Anderson and co-workers proved that extended eigenstates are absent in low-dimensional systems
with uncorrelated disorder [1–5]. Therefore, the width of an initially localized wave-packet saturates at a finite region
around the initial position in the long time limit. It was shown during the last two decades that extended states or a
localization–delocalization transition can appear in low-dimensional systems with correlated disorder [6–25]. Moreover,
the competition between nonlinearity and disorder has been investigated in Refs. [26–38]. In general lines, it has been
found that the nonlinear aspects seem to be dominant over the disorder. In particular, it was observed a counter-intuitive
sub-diffusive spreading of an initially localized wave-packet, without any indication of saturation for long time runs [27].
Experimentally, the competition between disorder and nonlinearity was investigated in coupled waveguides patterned on
an AlGaAs substrate [31]. The authors reported that the presence of nonlinearity enhances the localization of linear modes
whereas it induces the delocalization of nonlinear modes. Besides, the coupling between the lattice vibrations and the
electronic dynamics has been shown that plays important roles on the effective electronic transports [26–38]. Some authors
concluded that the superconducting state of several compounds is related to the strong electron–phonon coupling [39,40].
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Within the problems involving nonlinearity the presence of saturation within the nonlinearity distribution is an
interesting issue. In Ref. [41] the existence of bistable solitons in materials with saturable nonlinearity was demonstrated.
The discrete nonlinear Schrödinger (DNLS) equationwith saturable nonlinearitywas investigated in Ref. [42]. In Refs. [43,44]
it was shown the existence of defect solitons in systemswith saturable nonlinearity and parity–time symmetry. The authors
in Ref. [45] investigated in detail the nonreciprocal diode-like behavior of an asymmetric dimer with saturable nonlinearity.
It was found that the transmission band becomes wider and displaces to the higher input field intensities as the saturation
coefficient increases. Despite numerous studies, this issue has not been completely understood yet.

In this paper, we report further progress along these above lines. One considers the problem of electronic dynamics in
a disordered one-dimensional (1d) system with saturable nonlinearity. In our model we study the competition between
diagonal disorder and saturable nonlinearity. We will solve numerically the nonlinear Schrödinger equation and compute
the dynamics of an initially localized electronic wave-packet. Our calculations suggest that the saturable nonlinearity can
promote a sub-diffusive dynamics even in the presence of diagonal disorder. Moreover, we also investigated the effect of the
saturated nonlinearity for initial times of the electronic dynamics. Our results indicate the possibility ofmobile breather-like
modes.

2. Model and formalism

In order to describe the dynamical properties of a wave-packet within a tight-binding approach in the presence of
disorder and saturable nonlinearity, we use the generalized discrete nonlinear Schrödinger equation given by

ih̄
dcn
dt

= cn+1 + cn−1 +


ϵn +

χ |cn|2

1 + ζ |cn|2


cn, (1)

where ϵn are random number within the interval [−W/2,W/2]. χ and ζ are tunable parameters. ζ is the degree of sat-
uration of the nonlinearity. In the present work, we solve the set of nonlinear coupled differential equations using a pre-
dictor–corrector Adams–Bashforth–Moulton formalism initialized by the Runge–Kutta method of order eight with time
step 1t = 0.005 [46]. Our calculations for long times were done by using the tenth-order Adams–Bashforth as the pre-
dictor formula and eighth-order Adams–Moulton procedure as the corrector. The time step used here is sufficient to keep
the wave-function normalization for long time (|1 −


n |cn(t)|2| < 10−10). We emphasize that we also have used the

standard eighth-order Runge–Kutta method with 1t = 0.005 to entire integrations (not showed here). We have found
exactly the same results within of the numerical tolerance. It is worth mentioning that the computational time required
in the Runge–Kutta formalism is longer than the time required by the Adams–Bashforth–Moulton formalism. In order to
characterize the dynamical behavior of an initially localized wave packet, i.e.,


cn(t = 0) = δn,0


, we will compute typical

quantities associated with wave-packet spacial extension, namely the participation function and wave packet mean-square
displacement which are defined as [36,37]:

ξ(t) = 1/

n

|cn(t)|4 (2)

and

σ(t) =


n

[(n − ⟨n(t)⟩)2]|cn(t)|2, (3)

⟨n(t)⟩ =


n n|cn(t)|
2. In the long-time regime, the scaling behavior of the last quantity can also be used to distinguish

between localized and delocalized wave packets. Note that σ(t) varies from 0, for a wave function confined to a single site,
to a function which is proportional to the number of sites, for a wave uniformly extended over the whole system. In this
work, the numerical calculations are performed with tmax ≈ 106.

3. Results and discussion

Our calculations were resulted from the time evolution of a wave-packet initially localized at the center of a self-
expanding chain that is a simple trick to minimize the end effects. In particular, whenever the probability of finding the
particle at the ends of the chain exceeded 10−40, ten new sites are added to each end. The stability and convergence of the
numerical computations are checked at every time step. We verify that the norm conservation, e.g., |1 −


n |φn(t)|2| <

10−10 is always satisfied during the simulation time. In our calculations the width of the diagonal disorder used wasW = 5.
Besides, for the purpose of preventing the effects of a specific disorder configuration, all calculations were averaged over
150 disorder configurations.

Within the standard theory of localization it is well known that in the absence of nonlinearity (χ = 0) the wave-packet
does not show any spreading [36]. In Fig. 1 we provide a detailed analysis of the wave-packet dynamics for several values
of nonlinearity (χ = 1, 2 and 3) and saturation parameter ζ = 0 up to ζ = 30. The initial wave-packet it was considered
cn(t = 0) = δn,n0 where n0 is the center of the self-expanding chain we have used. By examining both the participation
function and the mean square displacement we observed that the wave-packet exhibits a sub-diffusive dynamics for long
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Fig. 1. The dynamics of an initially localized wave-packet in 1d disordered chain with saturable nonlinearity is studied. Two characteristic quantities
associated with wave-packet spacial extension are shown. Left panel: The participation number ξ(t) versus time t when χ = 1, 2, 3 and ζ = 0, 2, 4,
10, 20, 30 for each value of χ . Right panel: Plot of the mean square displacement σ(t) versus time t for the same cases of the left panel. Both these
characteristics exhibit a slow dynamics, ξ(t) ∝ t0.15 and σ(t) ∝ t0.3 , indicating a sub-diffusive electronic wave-packet spreading.

time. We can see clearly that both these characteristics exhibit a slow dynamics (ξ(t) ∝ t0.15 and σ(t) ∝ t0.3) thus sug-
gesting the presence of a sub-diffusive electronic wave-packet spreading. Also, we observe that for the strong saturation
degree (i.e. ζ ≫ 0), there is an intermediate regime in which that both quantities shown a slower dynamics. In fact, for in-
termediate times and strong ζ the electron seems to stay almost trapped. For long-time, even for strong ζ , the wave-packet
starts again to spread. For strong nonlinearity (χ = 2 or 3) the behavior mentioned above is more well defined. This is an
unusual behavior, directly related to the presence of saturable nonlinearity. We can provide some arguments that explain
qualitatively this new electronic dynamics. For the intermediate times, the electronic wave-packet is localized around the
center of chain, hence: |cn∗ |

2 > 0 with (n0 − Lc/2) < n∗ < (n0 + Lc/2) where n0 is the center of chain and Lc is the mean
width of the wave-packet for intermediate times (Lc is of the order of few sites). Therefore, at this stage and for large ζ , the
nonlinear term is weak and the on-site disorder plays the major/key roles thus slowing the electronic dynamics. For the
long-time limit, |cn∗ |

2 decreases, Lc increases a little and, even for large ζ , the cubic nonlinear term can compete with the
diagonal disorder thus promoting the sub-diffusive dynamics.

In order to verify whether the phenomenology above is robust, we will re-consider the same problem but with another
type of initial condition. To this end, we will perform the time evolution of an initial Gaussian wave packet with velocity
defined by

cn(t = 0) = A(Σ)e(ikn)e[−(n−n0)2/4Σ2
], (4)

where Σ is the variance of the initial wave packet, A(Σ) is the normalization constant and k is the wave-vector. In a pure
chain with hopping is equal to one, k is related to the one-electron energy as E = 2 cos(k). In Fig. 2 we plot the participation
function and the mean square displacement versus time for χ = 1 and several values of ζ . Here, we have taken Σ = 1 and
two different values of k = arccos(E/2) with E = 0.0 and 1.99 which correspond to the center and the edge of crystalline
band. From the numerical results, we can see that independent of the initial velocity of thewave-packet, the electronicwave-
packet exhibits the same sub-diffusive trend. Moreover, for large ζ and intermediate times, we obtain a slower dynamics
similar to that found in Fig. 1. Therefore, our results suggests that the presence of saturable nonlinearity promotes the
emergence of sub-diffusive dynamics. However, it is necessary to emphasize that for strong values of saturation (large ζ ),
the wave-packet remains almost localized for intermediate times and starts its spreading for long-times.

Before finishing ourworkwewill provide an additional analysis of the electronic dynamics at the initial stage of evolution.
To this end, we only need to consider a short chain with N = 100 sites. In the absence of saturation and disorder the
electronic dynamics in nonlinear crystalline chains is well established. In general, independent of the topology of system,
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Fig. 2. The time evolution of an initial Gaussian wave packet with Σ = 1 is investigated. Plots of the participation number ξ(t) and the mean square
displacement σ(t) versus time t for χ = 1 and ξ = 0, 1, 5, 10 at the center (E = 0.0) and the edge (E = 1.99) of crystalline band. These results again
confirm that the saturable nonlinearity induce the sub-diffusive spreading of the wave packet.

Fig. 3. Time evolution of an initially localized wave-packet in clean systems (W = 0) when χ = 1, 2, 3, 4 for ζ = 0, 2, 4, 6. We can see clearly that the
electron exhibits a ballistic dynamics (σ(t) ∝ t) even for strong saturation.

the presence of strong nonlinearity (χ > 4) can trap the one-electron wave-packet around the initial position. In contrast,
for weak nonlinear interaction (χ ≤ 4), the wave-packet remains extended. We investigate first the effect of saturated
nonlinearity on the wave-packet spreading in the absence of disorder, W = 0. In Fig. 3 we show our numerical results for
time evolution of an initially localized wave-packet in systems with ζ = 0, 2, 4 and 6 when χ ≤ 4. We can see clearly that
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dc

Fig. 4. Time-dependent wave-function profile |cn(t)|2 versus n and t for ζ = 0.25, 0.5, 0.75 and 1 when χ = 5,W = 0. The numerical results show that
the self-trapping behavior could be destroyed even in the presence of a weak saturation, thus promoting the spreading of the wave-packet.

for weak nonlinearity, the saturation does not modify the initial dynamics of electron. The electron still exhibits a ballistic
dynamics (σ(t) ∝ t) even for strong saturation. Next,wewill study the effect of saturation on the self-trapping state (χ > 4).
In Fig. 4 we plot the time-dependent wave-function profile |cn(t)|2 versus n and t when χ = 5 for ζ = 0.25, 0.5, 0.75 and
1. We can see that the saturation destroys the self-trapping state and promotes the spreading of the wave-packet. This
indicates that an arbitrarily weak saturation also plays a major role within the electron dynamics. This detailed numerical
analysis suggests that the self-trapping transition seems to be absent for strong saturated nonlinearity. Within this context,
an interesting question we ask is what will happen to extremely strong nonlinearity? For the purpose of answering to
this question, in Fig. 5, we plot the wave-function profile |cn(t)2| versus n and t at different values of saturation parameter,
ζ = 2, 4, 6 and 8whenχ = 10.We observe that for ζ about 2 themost part of thewave-packet remains trapped around the
initial site. For ζ > 2, however, the wave-packet spreads in two peaks that propagate along the chain. In fact, by examining
the wave-function profile we observe that the intensity of both peaks display smooth fluctuations. This behavior seems to
be a kind of breather mode that propagates along the chain. Soliton or breather modes are generally found in systems with
nonlinear interaction. Finally, to finishing our analysis about the short-time electronic dynamics we introduced a diagonal
disorderwith strengthW = 5 to the systemunder consideration. In Fig. 6we summarize our calculations showing thewave-
function profile |cn(t)|2 versus n and t when (a, b) ζ = 1, 2 for χ = 1 and when (c, d) ζ = 4, 6 for χ = 5. Our calculations
suggest that for this initial stage of evolution, the wave-packet remains trapped around the initial position. The breather-
like mode that was found, in the absence of disorder, does not appear when the disorder is taken into account. In fact, the
scattering by disorder promotes initially the localization of wave-packet even in the presence of saturated nonlinearity.

4. Summary and conclusions

In this research, we have considered the coupling between lattice vibration and the diagonal on-site energy. Within the
classical harmonic Hamiltonian and the Su–Schrieffer–Heeger approximation, a disordered Schrödinger equation is written
with the presence of diagonal saturable nonlinearity. We solve the effective Schrödinger equation with nonlinear diagonal
terms for an initially localized wave-packet using a predictor–corrector tenth-order Adams–Bashforth–Moulton method
initialized by the Dormand–Prince Runge–Kuttamethod of order eight. Fromnumerical analysis, we show that the saturable
nonlinearity can promote a long-time sub-diffusive regime similar to that found in the models with a diagonal unsaturated
nonlinearity [47]. However, our results reveal the existence of an intermediate region in which the wave-packet remains
almost localized. In other words, the presence of saturation in the nonlinear term promotes the appearance of sub-diffusive
dynamics however only for a long-time. Moreover, we also observed that as the saturation degree ζ is increased the time
interval in which that the electronic wave-packet approximately trapped increases. Therefore, the presence of saturable
nonlinearity promotes the appearance of a new time-scale inwhich the electronicwave-packet seems to be trapped. Aiming
to support further these interesting behaviors, we provided a detailed analysis of this phenomenology for amore generalized
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a b
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Fig. 5. The wave-function profile |cn(t)2| versus n and t at different values of saturation parameter, ζ = 2, 4, 6 and 8 in the limit of strong degree of
nonlinearity (χ = 10).

a b

dc

Fig. 6. The wave-function profile |cn(t)|2 versus n and t when (a, b) ζ = 1, 2 for χ = 1 andW = 5 and when (c, d) ζ = 4, 6 for χ = 5 and W = 5.

initial condition (a Gaussian) and also at the presence of initial momentum. Our calculations suggest that the behaviors are
qualitatively the same: almost trapped for intermediate times and sub-diffusive for long-times. In addition, since saturation
effect is usually important at the initial stage of evolution, we provided a detailed analysis of the electronic dynamics within
this initial stage of evolution. We found that in the absence of disorder and for weak nonlinearity, the electron exhibits a
ballistic dynamics (σ(t) ∝ t) even for strong saturation. For nonlinearity χ slightly above the bandwidth, the saturation
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destroys the self-trapping state and promotes the spreading of the wave-packet. Remarkably, for strong nonlinearity the
wave-packet spreads in two peaks that propagate along the chain. This behavior seems to be a kind of breather mode that
propagates along the chain.We also investigated the short-times behavior in the presence of diagonal disorder and saturated
nonlinearity. Our results indicate that the breather-like mode is absent. We hope that our paper can stimulate discussion
further along this line.

Acknowledgments

The research in Brazil was partially supported by the Brazilian research agencies CNPq, CAPES, INCT-Nano(Bio)Simes,
as well as FAPEAL (Ala goas State Agency). B. P. Nguyen was supported by Vietnam’s National Foundation for Science and
Technology Development (NAFOSTED) under grant number 103.01-2014.10.

References

[1] E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42 (1979) 673.
[2] B. Kramer, A. MacKinnon, Rep. Progr. Phys. 56 (1993) 1469;

For a review see, e.g. I.M. Lifshitz, S.A. Gredeskul, L.A. Pastur, Introduction to the Theory of Disordered Systems, Wiley, New York, 1988.
[3] B. Kramer, K. Broderix, A. Mackinnon, M. Schreiber, Physica A 167 (1990) 163.
[4] R.A. Romer, H. Schulz-Baldes, Europhys. Lett. 68 (2004) 247.
[5] V.N. Kuzovkov, W. von Niessen, Physica A 377 (2007) 115.
[6] J.C. Flores, J. Phys.: Condens. Matter. 1 (1989) 8471.
[7] D.H. Dunlap, H.L. Wu, P.W. Phillips, Phys. Rev. Lett. 65 (1990) 88;

H.-L. Wu, P. Phillips, Phys. Rev. Lett. 66 (1991) 1366.
[8] F.A.B.F. de Moura, M.L. Lyra, Phys. Rev. Lett. 81 (1998) 3735.
[9] F.A.B.F. de Moura, M.D. Coutinho-Filho, E.P. Raposo, M.L. Lyra, Europhys. Lett. 66 (2004) 585.

[10] F. Domínguez-Adame, V.A. Malyshev, F.A.B.F. de Moura, M.L. Lyra, Phys. Rev. Lett. 91 (2003) 197402.
[11] F.A.B.F. de Moura, Eur. Phys. J. B 78 (2010) 335.
[12] F.M. Izrailev, A.A. Krokhin, Phys. Rev. Lett. 82 (1999) 4062;

F.M. Izrailev, A.A. Krokhin, S.E. Ulloa, Phys. Rev. B 63 (2001) 41102.
[13] W.S. Liu, T. Chen, S.J. Xiong, J. Phys.: Condens. Matter 11 (1999) 6883.
[14] G.P. Zhang, S.-J. Xiong, Eur. Phys. J. B 29 (2002) 491.
[15] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G.B. Parravicini, F. Domínguez-Adame, R. Gómez-Alcalá, Phys. Rev. Lett. 82 (1999) 2159.
[16] V. Bellani, E. Diez, A. Parisini, L. Tarricone, R. Hey, G.B. Parravicini, F. Domínguez-Adame, Physica E 7 (2000) 823.
[17] H. Shima, T. Nomura, T. Nakayama, Phys. Rev. B 70 (2004) 075116.
[18] U. Kuhl, F.M. Izrailev, A. Krokhin, H.J. Stöckmann, Appl. Phys. Lett. 77 (2000) 633.
[19] H. Cheraghchi, S.M. Fazeli, K. Esfarjani, Phys. Rev. B 72 (2005) 174207.
[20] F.M. Izrailev, A.A. Krokhin, N.M. Makarov, Phys. Rep. 512 (2012) 125.
[21] A. Croy, M. Schreiber, Phys. Rev. B 85 (2012) 205147.
[22] C. Albrecht, S. Wimberger, Phys. Rev. B 85 (2012) 045107.
[23] M.O. Sales, S.S. Albuquerque, F.A.B.F. de Moura, J. Phys.: Condens. Matter 24 (2012) 495401.
[24] M.O. Sales, F.A.B.F. de Moura, Physica E 45 (2012) 97.
[25] G.M. Petersen, N. Sandler, Phys. Rev. B 87 (2013) 195443.
[26] F.A.B.F. de Moura, Iram Gléria, I.F. dos Santos, M.L. Lyra, Phys. Rev. Lett. 103 (2009) 096401.
[27] A.S. Pikovsky, D.L. Shepelyansky, Phys. Rev. Lett. 100 (2008) 094101.
[28] Ignacio Gracía-Mata, Dima L. Shepelyansky, Phys. Rev. E 79 (2009) 026205.
[29] A. Iomin, Phys. Rev. E 81 (2010) 017601.
[30] S. Tietsche, A. Pikovsky, Europhys. Lett. 84 (2008) 10006.
[31] Y. Lahini, A. Avidal, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100 (2008) 013906.
[32] S.E. Skipetrov, R. Maynard, Phys. Rev. Lett. 85 (2000) 736.
[33] T. Schwartz, G. Bartal, S. Fishman, M. Sergev, Nature 446 (2007) 53.
[34] D. Abhishek, J.L. Lebowitz, Phys. Rev. Lett. 100 (2008) 134301.
[35] W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42 (1979) 1698;

W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22 (1980) 2099;
A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Rev. Modern Phys. 60 (1988) 781.

[36] F.A.B.F. de Moura, R.A. Caetano, B. Santos, J. Phys.: Condens. Matter 24 (2012) 245401.
[37] F.A.B.F. de Moura, Physica D 253 (2013) 66.
[38] M.O. Sales, U.L. Fulco, M.L. Lyra, E.L. Albuquerque, F.A.B.F. de Moura, J. Phys.: Condens. Matter 27 (2015) 035104.
[39] D. Hirai, M.N. Ali, R.J. Cava, J. Phys. Soc. Japan 82 (2013) 124701.
[40] J.S. Kim, Wenhui Xie, R.K. Kremer, V. Babizhetskyy, O. Jepsen, A. Simon, K.S. Ahn, B. Raquet, H. Rakoto, J.-M. Broto, B. Ouladdiaf, Phys. Rev. B 76 (2007)

014516.
[41] S. Gatz, J. Herrmann, J. Opt. Soc. Amer. B 8 (1991) 2296.
[42] Mogens R. Samuelsen, Avinash Khare, Avadh Saxena, Kim O. Rasmussen, Phys. Rev. E 87 (2013) 044901.
[43] S. Hu, W. Hu, Physica B 429 (2013) 28.
[44] P. Cao, X. Zhu, Y.J. He, H.G. Li, Opt. Commun. 316 (2014) 190.
[45] T.F. Assunção, E.M. Nascimento, M.L. Lyra, Phys. Rev. E 90 (2014) 022901.
[46] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Dierential Equations I: Nonstiff Problems (Springer Series in Computational Mathematics), 1993;

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Wetterling, Numerical Recipes: The Art of Scientific Computing, third ed., Cambridge University Press,
New York, 2007.

[47] S. Flach, D.O. Krimer, Ch. Skokos, Phys. Rev. Lett. 102 (2009) 024101.

http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref1
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref2a
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref2b
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref3
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref4
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref5
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref6
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref7a
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref7b
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref8
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref9
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref10
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref11
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref12a
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref12b
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref13
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref14
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref15
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref16
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref17
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref18
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref19
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref20
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref21
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref22
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref23
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref24
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref25
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref26
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref27
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref28
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref29
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref30
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref31
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref32
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref33
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref34
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref35a
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref35b
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref35c
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref36
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref37
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref38
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref39
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref40
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref41
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref42
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref43
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref44
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref45
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref46a
http://refhub.elsevier.com/S0378-4371(15)00397-0/sbref47

	Electronic transport in disordered chains with saturable nonlinearity
	Introduction
	Model and formalism
	Results and discussion
	Summary and conclusions
	Acknowledgments
	References


