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Delocalization in the 1D Anderson Model with Long-Range Correlated Disorder
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We study the nature of electronic states in a tight-binding one-dimensional model with the on-s
energies exhibiting long-range correlated disorder and nonrandom hopping amplitudes. The site e
gies describe the trace of a fractional Brownian motion with a specified spectral densitySskd ~ 1yka .
Using a renormalization group technique, we show that for long-range correlated energy sequences
persistent increments (a . 2) the Lyapunov coefficient (inverse localization length) vanishes within
a finite range of energy values revealing the presence of an Anderson-like metal-insulator transiti
[S0031-9007(98)07502-4]
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The simplest theoretical model containing the basic i
gredients for studying the nature of one-electron states
disordered systems was introduced by Anderson [1] whi
considered one-electron moving in a lattice endowed
a random potential and allowed to hop only to neare
neighbor sites. Anderson pointed out that if the disord
is very strong the wave function may become expone
tially localized with a characteristic localization lengthlc.
Further, scaling arguments applied to noninteracting ele
tron systems in the presence of uncorrelated disorder h
indicated that all one-electron states are exponentially
calized in one and two dimensions for any amount of di
order, with a true metal-insulator transition taking plac
only in 3D on which one-electron states may remain e
tended for weak disorder [2,3].

The scaling prediction of the absence of extended sta
in one dimension agrees with a series of analytical r
sults which show that all wave functions must have a
exponentially decaying envelope whenever the potent
assumes random values uncorrelated from site to site
In recent years, there has been a growing interest in
study of the role played by correlations in the nature of th
one-electron states of low-dimensional disordered syste
The reason for that is based on the fact that a series
one-dimensional versions of the Anderson model has be
shown to exhibit a breakdown of Anderson’s localizatio
induced by internal correlations on the disorder distrib
tion [5–13]. Most of these models consider on-site ene
giesen distributed in such a way that the impurity alway
appears in finite segments of fixed size. Extended sta
arise from resonant modes which present no backscat
ing through these finite structures. Such states form a d
crete set of energy values. Therefore, these models do
present a true disorder induced metal-insulator transiti
in the thermodynamic limit which is characterized by th
presence of mobility edges separating extended and loc
ized energy eigenstates. Also, chains with correlated o
diagonal interactions [5,9,11] have been reported to disp
delocalized states. More recently, thermally annealed d
ordered chains with the on-site energies correlated
keiejl ~ e2ji2jjyj have also been investigated [14]. It ha
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been shown that the localization length monotonically i
creases with the correlation lengthj, but all states remain
localized due to the absence of typical resonances. A co
mon point on all these models is the fact that localizatio
properties are modified when some kind of short-range c
relation is introduced in the disorder distribution.

Within this context, a natural question to be made
about the possible effects due to long-range correlatio
in the disorder distribution. Several stochastic process
in nature are known to generate long-range correlat
random sequences which have no characteristic scale [
These sequences usually have an approximate pow
law spectral density of the formSskd ~ 1yka , where
Sskd is the Fourier transform of the two-point correlatio
function keiejl andk is related to the wavelengthl of the
undulations on the random parameter landscape byk 
1yl. The widespread occurrence in nature of sequen
with 1yka noise, as, for example, the nucleotide sequen
in DNA molecules [16], seems to be related to the gene
tendency of large driven dynamical systems to evolve f
a self-organized critical state [17].

In this work, we investigate the nature of one-electro
states of the 1D Anderson model on which the o
site energies exhibit a long-range correlated disord
distribution characterized by a power-law spectral densi
The on-site energy landscape is generated by conside
the potential as the trace of a fractional Brownian motio
By using a renormalization group method, we show th
all one-electron states remain localized fora , 2, but
there is a finite range of energy values with extend
eigenstates fora . 2 even in the thermodynamic limit.

In what follows, we will consider a Hamiltonian mode
describing one electron moving in a chain with a sing
orbital per site and nearest-neighbor interactions. In t
atomic orbital wave function basishjnlj the Hamiltonian
is expressed as

H 
X
n

enjnl knj 1 t
X
n

fjnl kn 1 1j 1 jnl kn 2 1jg ,
(1)

whereen is the energy at siten andt is the first-neighbor
hopping amplitude. Hereafter we will use energy units
© 1998 The American Physical Society 3735
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t  1. In the standard Anderson model the site energ
are considered to assume random values uncorrel
from site to site exhibiting, therefore, a white nois
spectrumSskd ~ k0.

In order to introduce long-range correlations in th
disorder distribution, the site energiesen will be con-
sidered to be in such a sequency to describe the tr
of a fractional Brownian motion with a specified spe
tral densitySskd ~ 1yka . For a  0 one recovers the
traditional Anderson model withd-correlated disorder
kenen0l  ke2

nldn,n0. In the case ofa  2 the sequency
of site energies resembles the trace of the usual Brown
motion. The exponenta is directly related to the Hurs
exponentH of the rescaled range analysis (a  2H 1 1)
which describes the self-similar character of the series
the persistent character of its increments. To generate
trace of a fractional Brownian motion with a chosen spe
tral density, we followed an approach based on the use
discrete Fourier transforms to construct long-range co
lated sequences [18–20]. A power-law spectral den
is imposed by construction when one chooses the on-
energies to be given by the relation

ei 
Ny2X
k1

"
k2a

É
2p

N

És12ad#1y2

cos

√
2pik

N
1 fk

!
, (2)

whereN is the number of sites andfk areNy2 indepen-
dent random phases uniformly distributed in the interv
f0, 2pg. In what follows we will normalize the energy se
quency to havekenl  0 and De 

p
ke2

nl 2 kenl2  1.
In Fig. 1, we plot typical traces generated by the p
ceding relation. Notice the smoothening of the ener
landscape for persistentlike sequences (a . 2; H . 1y2).
These have the feature of displaying well defined pow
law spectral densities in contrast to real correlated
quences which exhibit a noisy power-law spectrum. W
expect that the present filtering of the noise in the amp
tudes of the Fourier components of the potential does
include or remove any relevant feature associated with
underlying correlations.

The analytical arguments used to demonstrate the c
plete localization in one-dimensional disordered cha
cannot be extended to the present model. Complete lo
ization is a consequence of a limiting theorem (Furste
berg theorem) about the product ofuncorrelatedrandom
variables [4]. Contrary to short-range correlations, lon
range ones cannot be removed by any coarse-graining
cedure. To study the properties of the one-electron st
of the above model, we applied the general renorm
ization technique to the one-dimensional nearest-neigh
tight-binding model whose Schroedinger equation read

enun 1 tsun21 1 un11d  Eun , (3)

where jCl 
P

n unjnl is an eigenstate with energyE.
The method is based on the particular form assum
by the equation of motion satisfied by the Green
3736
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FIG. 1. Typical on-site energy landscapes generated fr
relation (2) with N  4096: a  0.0: uncorrelated random
sequency;a  2.0: trace of a usual Brownian motion;a 
2.5: trace of a fractional Brownian motion with persisten
increments. Notice the smoothening of the energy landsc
for increasing values ofa.

operator matrix elements fGszdgmn  kmj
1

z2H
jnl

[21,22]:

sz 2 e0
n1md fGszdgn1m,n  dm,0

1 t0
n1m,n1m21fGszdgn1m21,n

1 t0
n1m,n1m11fGszdgn1m11,n ,

(4)

where e
0
i  ei , t0

i,i11  t0
i,i21  t, and m 

0, 61, 62, . . . .
After eliminating the elements associated with a giv

site, the remaining set of equations of motion can
expressed in the same form as the original one
with site energies and hopping amplitude renormalize
Therefore, the operation of renormalization consists
removing iteratively the sites1, 2, 3, . . . , N of the lattice,
obtaining the effective energies of the extremal sites a
the effective hopping interaction between them throu
the following three iterative equations:

e
sN11d
0 sEd  e

sNd
0 sEd 1 t

seffd
0N

1

E 2 e
sN21d
N sEd

t , (5)

e
sNd
N11sEd  eN11 1 t

1

E 2 e
sN21d
N sEd

t , (6)
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seffd
0,N11sEd  t

seffd
0N sEd

1

E 2 e
sN21d
N sEd

t , (7)

wheree
sNd
0 (e

sNd
N11) is the effective energy at site0 (N 1

1) after the decimation of theN internal sites andt
seffd
0,N11

is the effective hopping between sites0 andN 1 1.
We investigate the nature of the electronic states

computing the Lyapunov coefficientg (inverse localiza-
tion length). Farchioniet al. [22] have shown that, after
a large number of iterations,g is asymptotically related to
the effective hopping amplitude as

gsEd  lim
N!`

"
1
N

ln

É
GN ,N sEd
G0,N sEd

É#

 2 lim
N!`

1
N

ln jt
seffd
0,N sEdj . (8)

Therefore, a linear regression of lnjt
seffd
0,N sEdj versusN al-

lows for a direct extrapolation of the Lyapunov coefficien
in the thermodynamic limit after a finite, although large
number of iterations. The effective interactiont

seffd
0N sEd

presents an oscillating behavior in the case of extend
states (which implies a vanishingg) and an exponentially
decreasing behavior for exponentially localized states (
nite g).

We computedgsEd within the band of allowed energies
for distinct values of the exponenta. The density of states
(DOS) was numerically obtained using Dean’s metho
which is based on the negative eigenvalue theorem [2
In Fig. 2 we show typical plots of the DOS as obtaine
from particular energy sequences on chains with104 sites.
Notice that the DOS becomes less rough as the charac
istic exponenta is increased, but the imposed normaliza
tion makes its widtha independent. The density of state
has no sharply defined band edges but stretches for e
gies outside the Lifshitz boundaries (Eyt  64) because
ranges of additional states become available through
disordered potential distribution [24].

In Fig. 3 we show plots ofg versusE for typical val-
ues of a. For a  0, the Lyapunov coefficient is fi-
nite within the entire band of allowed energies indicatin
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FIG. 2. DOS versusE for chains withN  104 sites: a 
1.0: energy landscape with antipersistent increments;a  2.5:
energy landscape with persistent increments. Notice that
DOS becomes less rough asa is increased.
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that all electronic eigenstates remain exponentially loca
ized, with the localization being more pronounced nea
the band edges, as usual. We also included the Lyapun
coefficient obtained for a chain with random uncorrelate
on-site energies whose spectrum has alsoa  0 but ex-
hibits a white noise in the Fourier component amplitudes
Both curves show similar trends which indicates that th
filtering of the amplitude noise does not influence the lo
calization properties, as expected. We found thatgsEd
is finite within the entire band of allowed energies for all
potentials which have antipersistent increments (a , 2).
However, this picture is qualitatively different for poten-
tials with persistent increments (a . 2). The Lyapunov
coefficient vanishes within a finite range of energy value
revealing the presence of a phase of extended states n
the center of the band. In this phase, the error inhere
to the numerical regression, although very small, is suc
that g  0 is within the error bar. Further, the effective
hopping does not show any tendency of vanishing withi
this range as the renormalization procedure goes on.
oscillates around a constant value which is a typical sig
nature of extended states, as shown in Fig. 4. We hav
studied chains with size ranging from104 up to 105 sites.
All gsEd curves appear to be the same (within the erro
bars) with no identifiable shrinking of the extended phas
as larger chains are considered. This finite size analys
gives a strong support to the hypothesis that the extend
phase is stable in the thermodynamic limit.

In Fig. 5, we show the phase diagram in the (E, a)
plane as obtained from chains withDeyt  1 and the
same random phase sequence which generates landsca
similar to the ones displayed in Fig. 1. Fora  2.0 the

-4.0 0.0 4.0
0.0

0.8

1.5

-4.0 -2.0 0.0 2.0 4.0
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0.0
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FIG. 3. Lyapunov coefficientg versusE as obtained from
chains with N  104 sites. Fora  0 (continuous line) all
states are localized as expected. The results for a rando
sequency with white noise in the Fourier component amplitude
(dashed line) show that the filtering of the amplitude noise doe
not influence the localization properties. Fora  2.5 (long-
dashed line), which corresponds to an on-site energy landsca
with persistent increments,g vanishes within a finite range of
energy values indicating the presence of extended states ne
the center of the band. In the inset, we show data fora  2.0
with (dashed line) and without (continuous line) amplitude
noise filtering, above which the delocalized phase emerge
Data from longer chains produce curves indistinguishable t
the eyes.
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FIG. 4. The effective interactionjt
seffd
0,N sEdj versusN for a se-

quency with originally104 sites andE  20.5. a  1.0, for
which the one-electron states are localized (exponentially d
caying effective interaction);a  2.5, showing the oscillatory
behavior typical of extended states.

Lyapunov coefficient vanishes in a single energy (see in
of Fig. 4) asg ~ jE 2 Ecj

n with n  2.0. The range of
energies corresponding to extended states increases
a, with the Lyapunov coefficient vanishing linearly nea
Ec for large values ofa and with the width of the extended
phase saturating asa ! `. The boundary asymmetry is
inherent to the particular long-range correlated sequen
used. It can be removed after a configurational avera
although a series of recent works have questioned
physical meaning of self-averaging techniques in lon
range correlated disordered systems due to the prese
of large sample-to-sample fluctuations [25].

In summary, we found that the one-dimensional Ande
son model with long-range correlated diagonal disord
displays a phase of extended electronic states once
on-site energy disorder distribution exhibits a power-la
spectral densitySskd ~ 1yka with a . 2, i.e., whenever
the energy sequency increments have a long-range per
tent character (H . 1y2). Contrary to dimerlike models
where delocalization is observed only at particular res
nance energies, this model exhibits a true Anderson tr

-1.5 -1.0 -0.5 0.0 0.5 1.0
E/t

0.0

1.0

2.0

3.0

4.0

5.0

α

Extended

Localized

FIG. 5. Phase diagram in the (Eyt, a) plane. Data were
obtained from chains with104 sites,Deyt  1.0, and the same
random phases sequency. The phase of extended states em
for a . 2, and its width saturates asa ! `. The band of
allowed states ranges approximately from24.0 , E , 4.0 and
is independent ofa by construction (see text).
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sition with mobility edges separating localized and the
modynamically extended states and, in this sense, ha
behavior similar to the one obtained for chains with in
commensurate deterministic potentials [22]. This resu
has significant technological interest since it predicts th
polymeric chains with long-range correlated disorder ma
present unusual transport properties. It would certainly b
valuable to understand the observed delocalization tran
tion from analytical grounds as well as to perform a larg
scale numerical effort to obtain the full phase diagram
thesE, ad space for distinctDeyt and to establish the cor-
responding universal scaling exponents.
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