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Delocalization in the 1D Anderson Model with Long-Range Correlated Disorder
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We study the nature of electronic states in a tight-binding one-dimensional model with the on-site
energies exhibiting long-range correlated disorder and nonrandom hopping amplitudes. The site ener-
gies describe the trace of a fractional Brownian motion with a specified spectral d&(sjity: 1/k“.

Using a renormalization group technique, we show that for long-range correlated energy sequences with
persistent incrementsx(> 2) the Lyapunov coefficient (inverse localization length) vanishes within

a finite range of energy values revealing the presence of an Anderson-like metal-insulator transition.
[S0031-9007(98)07502-4]

PACS numbers: 73.20.Jc, 05.40.+j, 72.15.Rn

The simplest theoretical model containing the basic inbeen shown that the localization length monotonically in-
gredients for studying the nature of one-electron states inreases with the correlation lenggh but all states remain
disordered systems was introduced by Anderson [1] whiclocalized due to the absence of typical resonances. A com-
considered one-electron moving in a lattice endowed bynon point on all these models is the fact that localization
a random potential and allowed to hop only to nearestproperties are modified when some kind of short-range cor-
neighbor sites. Anderson pointed out that if the disorderelation is introduced in the disorder distribution.
is very strong the wave function may become exponen- Within this context, a natural question to be made is
tially localized with a characteristic localization length  about the possible effects due to long-range correlations
Further, scaling arguments applied to noninteracting eledn the disorder distribution. Several stochastic processes
tron systems in the presence of uncorrelated disorder hawe nature are known to generate long-range correlated
indicated that all one-electron states are exponentially lorandom sequences which have no characteristic scale [15].
calized in one and two dimensions for any amount of dis-These sequences usually have an approximate power-
order, with a true metal-insulator transition taking placelaw spectral density of the forn$(k) « 1/k%, where
only in 3D on which one-electron states may remain ex-S(k) is the Fourier transform of the two-point correlation
tended for weak disorder [2,3]. function(e; €;) andk is related to the wavelength of the

The scaling prediction of the absence of extended statasdulations on the random parameter landscapé by
in one dimension agrees with a series of analytical re1/A. The widespread occurrence in nature of sequences
sults which show that all wave functions must have arwith 1/k“ noise, as, for example, the nucleotide sequency
exponentially decaying envelope whenever the potentiah DNA molecules [16], seems to be related to the general
assumes random values uncorrelated from site to site [4lendency of large driven dynamical systems to evolve for
In recent years, there has been a growing interest in tha self-organized critical state [17].
study of the role played by correlations in the nature of the In this work, we investigate the nature of one-electron
one-electron states of low-dimensional disordered systemstates of the 1D Anderson model on which the on-
The reason for that is based on the fact that a series @ite energies exhibit a long-range correlated disorder
one-dimensional versions of the Anderson model has beetlistribution characterized by a power-law spectral density.
shown to exhibit a breakdown of Anderson’s localizationThe on-site energy landscape is generated by considering
induced by internal correlations on the disorder distributhe potential as the trace of a fractional Brownian motion.
tion [5—13]. Most of these models consider on-site enerBy using a renormalization group method, we show that
giese, distributed in such a way that the impurity always all one-electron states remain localized fer< 2, but
appears in finite segments of fixed size. Extended statdhere is a finite range of energy values with extended
arise from resonant modes which present no backscattegigenstates forx > 2 even in the thermodynamic limit.
ing through these finite structures. Such states form a dis- In what follows, we will consider a Hamiltonian model
crete set of energy values. Therefore, these models do ndéscribing one electron moving in a chain with a single
present a true disorder induced metal-insulator transitioorbital per site and nearest-neighbor interactions. In the
in the thermodynamic limit which is characterized by theatomic orbital wave function basi$n)} the Hamiltonian
presence of mobility edges separating extended and locak expressed as
ized energy eigenstates. Also, chains with correlated off-
diagonal i%)t/era%tions [5,9,11] have been reported to display? = D ealn)(nl + 1D [n)(n + 11 + In)(n = 111,
delocalized states. More recently, thermally annealed dis- 8 " (1)
ordered chains with the on-site energies correlated asheree, is the energy at site and: is the first-neighbor
(€i€j) = e~ li=il/¢ have also been investigated [14]. It hashopping amplitude. Hereafter we will use energy units of
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t = 1. In the standard Anderson model the site energies

are considered to assume random values uncorrelated

from site to site exhibiting, therefore, a white noise
spectrums (k) o k°. —

30 - a=0.0

. . , w
In order to introduce long-range correlations in the
disorder distribution, the site energies will be con-
sidered to be in such a sequency to describe the trace -3.0 -
of a fractional Brownian motion with a specified spec-
tral densityS(k) « 1/k%. For @ = 0 one recovers the 30 r =20
traditional Anderson model with5-correlated disorder
(en€w) = (€2)8,,». In the case ofx = 2 the sequency 10
of site energies resembles the trace of the usual Brownian =~ % 10 &
motion. The exponent is directly related to the Hurst '
exponentH of the rescaled range analysis & 2H + 1) 30 -
which describes the self-similar character of the series and
the persistent character of its increments. To generate the 30+ @725
trace of a fractional Brownian motion with a chosen spec-
tral density, we followed an approach based on the use of 10 ¢
discrete Fourier transforms to construct long-range corre- w
lated sequences [18—20]. A power-law spectral density 1.0 ¢
is imposed by construction when one chooses the on-site 30 |
energies to be given by the relation ' ‘
Cl L an [T (2w " SITE INDEX
& = Z[k‘“ - } os( =+ ¢k>, (2)
k=1 N FIG. 1. Typical on-site energy landscapes generated from

. . . relation (2) with N = 4096: a = 0.0: uncorrelated random
whereN is the number of sites and; areN /2 indepen-  sequency;a = 2.0: trace of a usual Brownian motiony =
dent random phases uniformly distributed in the interval.5: trace of a fractional Brownian motion with persistent

[0,27]. In what follows we will normalize the energy se- increments. Notice the smoothening of the energy landscape
quency to havée,) = 0 andAe = ’—<e%) — e, = 1. for increasing values aok.
In Fig. 1, we plot typical traces generated by the pre-
ceding relation. Notice the smoothening of the energy _ |
landscape for persistentlike sequences¥ 2; H > 1/2).  operator matrix elements [G(z)]u, = (ml-—5rIn)
These have the feature of displaying well defined powerf21,22]:
law spectral densities in contrast to real correlated se;, _ o0
. . . (Z En+,u,) [G(Z)]nvﬂu,n

guences which exhibit a noisy power-law spectrum. We
expect that the present filtering of the noise in the ampli- S AT | ¢{¢9) g
tudes of the Fourier components of the potential does not + 10 [G@) e asins
include or remove any relevant feature associated with the TR R a ( 2)
underlying correlations.

The analytical arguments used to demonstrate the conwhere e = ¢;, 10, =10,y =1¢, and u=
plete localization in one-dimensional disordered chaing), =1, *=2,....
cannot be extended to the present model. Complete local- After eliminating the elements associated with a given
ization is a consequence of a limiting theorem (Furstensite, the remaining set of equations of motion can be
berg theorem) about the product wficorrelatedrandom expressed in the same form as the original one but
variables [4]. Contrary to short-range correlations, long-with site energies and hopping amplitude renormalized.
range ones cannot be removed by any coarse-graining proherefore, the operation of renormalization consists in
cedure. To study the properties of the one-electron stateemoving iteratively the site$,2,3,..., N of the lattice,
of the above model, we applied the general renormalebtaining the effective energies of the extremal sites and
ization technique to the one-dimensional nearest-neighbdhe effective hopping interaction between them through
tight-binding model whose Schroedinger equation reads the following three iterative equations:

= 6,0

€ntty + t(up—1 + ups1) = Eu,, (3) 6(()N+l)(E) = E(()N)(E) + l‘((;]:\t/t) % t, (5)
E— ey (E)
where |W) = > u,|n) is an eigenstate with energy.
The method is based on the particular form assumed 61(vN+)1(E) = ey + t%,, (6)
by the equation of motion satisfied by the Green’s E — ey (E)

3736



VOLUME 81, NUMBER 17 PHYSICAL REVIEW LETTERS 26 OTOBER 1998

(eff) (eff) 1 that all electronic eigenstates remain exponentially local-
11 E)=1 E)————1t, 7 . . 2 .
on+1(E) = oy )E - ej(VNfl)(E) @ ized, with the localization being more pronounced near

) ) ) the band edges, as usual. We also included the Lyapunov
wheree" ey, is the effect t site (v + ici : in wi
o (en+1) is the effective energy at site ( coefficient obtained for a chain with random uncorrelated
. . . . (eff) . .

1) after the decimation of the/ internal sites andy v+,  on-site energies whose spectrum has alse 0 but ex-
is the effective hopping between sitesindN + 1. hibits a white noise in the Fourier component amplitudes.

We investigate the nature of the electronic states byoth curves show similar trends which indicates that the
computing the Lyapunov coefficient (inverse localiza- filtering of the amplitude noise does not influence the lo-
tion length). Farchionet al. [22] have shown that, after calization properties, as expected. We found théf)

a large number of iterations, is asymptotically related to s finite within the entire band of allowed energies for all

the effective hopping amplitude as potentials which have antipersistent incremenis<( 2).
_ 1 Gyn(E) However, this_pictur_e is qualitatively different for poten-
y(E) = Jlim, N In Gon(E) tials with persistent increments: (> 2). The Lyapunov

coefficient vanishes within a finite range of energy values
= — lim 1 In Itg}fvf)(E)l. 8) revealing the presence of a phase of extended states near
N—o N the center of the band. In this phase, the error inherent
Therefore, a linear regression ofltéflfvf)(E)l versush al- 1o the num_erlcgl regression, although very small, is _such
lows for a direct extrapolation of the Lyapunov coefficientthat’y = 0 is within the error bar. Further, the effective
in the thermodynamic limit after a finite, although large, "OPPINg does not show any tendency of vanishing within

number of iterations. The effective interacti eff)(E) this range as the renormalization procedure goes on. It

L L %scillates around a constant value which is a typical sig-
presents an oscillating behavior in the case of extende I
nature of extended states, as shown in Fig. 4. We have

states (which implies a vanishing and an exponentially g\ chains with size ranging fromd* up to 10° sites.

gﬁgr;a\smg behavior for exponentially localized states (ﬂAII Y(E) curves appear to be the same (within the error

We computedy (E) within the band of allowed energies bars) with no identifiable shrinking of the extended phase

i ) as larger chains are considered. This finite size analysis
for distinct values of the exponeat The density of states . .
(DOS) was numerically obtained using Dean’s methogJ1Ves & strong support to the hypothes_ls _that the extended
which is based on the negative eigenvalue theorem [23 .hlar‘]S?:i'S s;at;lveelr;rt]gsvtr;ﬁ;moﬁggsrr&:gIlrr:l;tq. in the, ¢)
In Fig. 2 we show typical plots of the DOS as obtained 9.9 P 9 ’

from particular energy sequences on chains Withsites. plane as obtained from chains withe/s = 1 and the

Notice that the DOS becomes less rough as the characteta e random phase sequence which generates landscapes

istic exponentx is increased, but the imposed normaliza—sImllar to the ones displayed in Fig. 1. For= 2.0 the
tion makes its widthr independent. The density of states
has no sharply defined band edges but stretches for ener- 1.5
gies outside the Lifshitz boundarieB {r = +4) because
ranges of additional states become available through the
disordered potential distribution [24].

In Fig. 3 we show plots ofy versusE for typical val-
ues of . For a = 0, the Lyapunov coefficient is fi-
nite within the entire band of allowed energies indicating

Y(E)

0.3 T
— a=1.0
a=25

FIG. 3. Lyapunov coefficienty versusE as obtained from
chains withN = 10* sites. Fora = 0 (continuous line) all
states are localized as expected. The results for a random
0.1t . sequency with white noise in the Fourier component amplitudes
(dashed line) show that the filtering of the amplitude noise does
not influence the localization properties. Fer= 2.5 (long-
00 ‘ ‘ ‘ dashed line), which corresponds to an on-site energy landscape
4.0 -2.0 0.0 2.0 4.0 with persistent incrementg; vanishes within a finite range of
energy values indicating the presence of extended states near
the center of the band. In the inset, we show datanfee 2.0
FIG. 2. DOS versust for chains withN = 10* sites: o = with (dashed line) and without (continuous line) amplitude
1.0: energy landscape with antipersistent incremeatss 2.5: noise filtering, above which the delocalized phase emerges.
energy landscape with persistent increments. Notice that thBata from longer chains produce curves indistinguishable to
DOS becomes less rough asis increased. the eyes.

DOS
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10% sition with mobility edges separating localized and ther-
modynamically extended states and, in this sense, has a
weos behavior similar to the_ one obtaine_d for chains yvith in-
10° . ' ‘ . commensurate deterministic potentials [22]. This result
has significant technological interest since it predicts that
polymeric chains with long-range correlated disorder may
107 a=1.0 . present unusual transport properties. It would certainly be
valuable to understand the observed delocalization transi-
tion from analytical grounds as well as to perform a large
scale numerical effort to obtain the full phase diagram in
the (E, ) space for distincte/r and to establish the cor-
responding universal scaling exponents.

FIG. 4. The effective interactiohéfg)(E)I versusN for a se- This work was partially supported by CNPq, CAPES,

i the naSleation sitos are localized (exponentialy e, FINEP (Braziian agencies). - The research work of
caying effective interaction)p = 2.5, showing the oscillatory “FABFM is supported by CNPq.
behavior typical of extended states.
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