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Abstract

In this work, we study the vibrational modes and energy spreading in a harmonic chain model

with diluted second-neighbors couplings and correlated mass-spring disorder. While all

nearest neighbor masses are coupled by an elastic spring, second neighbors springs are

introduced with a probability pD. The masses are randomly distributed according to the site

connectivity mi = m0

(

1 + 1/nα
i

)

, where ni is the connectivity of the site i and α is a tunable

exponent. We show that maximum localization of the vibrational modes is achieved for

α ≃ 3/4. The time-evolution of the energy wave-packet is followed after an initial localized

excitation. While the participation number remains finite, the energy spread is shown to be

sub-diffusive after a displacement and super-diffusive after an impulse excitation. These

features are related to the development of a power-law tail in the wave-packet distribution.

Further, we unveil that the spring dilution leads to the emergence of a resonant localized state

which is signaled by a van Hove singularity in the density of states.
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1. Introduction

The Anderson localization phenomenon is ubiquitous to

any wave-like excitation that propagates in random media

[1–5]. In particular, the nature of eigenmodes in non-periodic

classical lattices is a very interesting issue with several lines

of investigation [6–25, 29]. It is well known that the

energy flux in low-dimensional non-periodic classical lattices

is strongly dependent on the localized/extended nature of the

vibrational modes. Dyson [30] showed that the vibrational

eigenstates of a one-dimensional disordered harmonic chain

with N random masses can be mapped onto the one-electron

tight-binding model [6]. Most of the normal vibrational

modes are localized, except a few low-frequency modes

whose number is of the order of
√

N [6, 19]. Furthermore,

by using analytical arguments, the transport of energy in

mass-disordered harmonic chains is directly related to the

delocalized vibrational modes, also termed non-scaterred

modes as they are not influenced by the underlying disorder,

as well as on the initial excitation [20]. Calculations

indicated that uncorrelated random chains have a super-

diffusive behavior for the second moment of the energy

distribution [M2(t) ∝ t1.5] for impulse initial excitations,

while for initial displacement excitations a sub-diffusive spread

takes place [M2(t) ∝ t0.5]. The dependence of the second

moment spread on the initial excitation was also obtained

in [31].

It has been demonstrated that the above framework

can change when some correlations are introduced in the

disorder distribution [21–25]. A new set of high-frequency

delocalized modes emerge when short [21, 22] or long-range

correlations [23–25] are introduced in the disorder distribution
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(spring constants or masses). A phase of low-energy

extended collective excitations was observed in the regime of

strong long-range correlations in the mass distribution [23].

Recently, the effect of short-range correlations in the mass

distribution on the heat conduction through harmonic chains

was investigated [26]. It has been unveiled that high and

low-frequency modes are affected quite differently. While

the high-frequency modes become more extended, there is an

overall tendency of enhanced localization of the low-frequency

modes. Therefore, the effect of correlations on the localization

of harmonic excitations is quite non-trivial and new insights

are in order to properly develop a deeper understanding of its

underlying physical mechanisms.

In this work, we contribute along this research line by

introducing a disordered harmonic chain model with correlated

random masses and connectivities. The model consists of

a linear harmonic chain with first and second neighbors

couplings. All first neighbors springs are present but only

a fraction pD of the second neighbor ones. Therefore, each

mass can be connected with two, three or four other masses.

In order to couple the disorder in the connectivity to the

mass distribution, we consider the i-th mass to be given by

mi = m0

(

1 + 1/nα
i

)

, where m0 is a reference mass, ni is the

connectivity of the site i and α is a tunable parameter.

Such power-law relation between the local connectivity

and mass allows for a straighfoward extension for the case

of harmonic chain models with long-range couplings without

the need of introducing any characteristic connectivity scale.

These models have been shown to be associated with the

problem of optimal synchronization of vibrational waves [27]

and mode localization in the presence of cost limitations [28].

By using exact diagonalization on finite lattices, we

calculate the participation number within the allowed

frequencies band. We will show that the correlation between

the mass and connectivity disorders, controlled by the

parameter α, can be tuned to achieve a maximum enhancement

of Anderson localization, without affecting the sub and super-

diffusive character of initially localized excitations. The

dynamical scaling behavior of the wave-packet will also be

characterized. Further, we will show that there is a set of

localized modes at a resonance frequency that is signaled as a

van Hove singularity in the density of states.

2. Model and formalism

We will consider a one-dimensional chain with N masses

connected by harmonic springs. In this chain model, all nearest

neighbors are connected by a spring with elastic constant k0.

Additional springs, coupling directly second neighbors, are

also introduced. However, only a fraction pD of the second

neighbor masses are randomly chosen to be coupled by a direct

spring. In order to correlate the mass distribution with the

disordered connectivity distribution, the masses are chosen

according to

mi = m0 (1 + 1/ni
α) (1)

where ni represents the number of springs connected to site i,

m0 is a reference mass and α is a tunable parameter that controls

the degree of correlation between the connectivity and mass

random distribution. In the limits of α = 0 and α → ∞
disorder remains restricted to the connectivity distribution.

The equation of motion for the i-th mass is given by:

mi

d2qi

dt2
=

∑

i �=j

ki,j (qi − qj ) (2)

In this model, we have:

ki,j =







k0 if |i − j | = 1
1
2
k0θ(p − pD) if |i − j | = 2

0 otherwise

where θ(x) is the Heaviside function and p is a random number

uniformly distributed within the interval [0, 1]. The second

neighbors dilution probability is kept equal to pD = 1/2.

The second neighbors elastic constant is taken to be k0/2 to

account for the size dependence of the spring deformation. The

phenomenology we are going to explore remains qualitatively

the same for other dilution fractions. We will apply two distinct

formalisms to study the vibrational modes and the energy flux

of this model. To study the energy dynamics we consider

that the fraction of the total energy H0 at site (i) is given by

fi(t) = hi(t)/H0 where hi(t) is the energy of the mass at site

(i). In the case of a uniform energy packet spread over a chain

with N sites, we have fi ≈ 1/N . Therefore, we can define the

generalized time-dependent participation number

ξ(t) =
1

N
∑

i

f 2
i

. (3)

ξ = N for a uniform energy packet. Thus, the function ξ is a

measure of the number of masses that effectively participate of

the energy transport. In our calculations, an initial excitation

is introduced at the center of the chain, i.e. the site (N/2).

We will also compute the second moment of the energy

distribution, M2(t), defined by [20]

M2(t) =
N

∑

i=1

(i − i0)
2[fi(t)], (4)

The second moment of the energy distribution M2(t) has the

same status of the mean-square displacement of the wave-

packet of an electron in a solid [20, 31]. We solved equation (2)

by using the standard Runge–Kutta algorithm to obtain ξ(t)

and M2(t).

The vibrational normal modes can be obtained through

the exact diagonalization of the secular matrix �, where

�i,i = (ki,i+1 + ki,i−1 + ki,i+2 + ki,i−2)/mi , �i,i+1 = �i+1,i =
−ki+1,i/

√
(mi+1mi), �i,i+2 = �i+2,i = −ki+2,i/

√
(mi+2mi)

and all other �i,j = 0. The spatial extension of those

eigenstates can be obtained by calculating their participation

number defined by [32]:

ξ(ω2) =

N
∑

i=1

u2
i (ω

2)

N
∑

i=1

u4
i (ω

2)

, (5)
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Figure 1. Average participation number versus α for
N = 200, 400, 800 and 1600. Calculations were done for 1000
samples and m0 = 2. Notice that a stronger localization appears for
α ≃ 0.75.

where the ui’s are the coefficients of the eigenstate of frequency

ω. The participation number scales proportional to the system

size for extended states and is finite for exponentially localized

modes.

3. Results and discussions

We applied an exact diagonalization procedure on finite chains

with N = 200 up to 1600 sites. All calculations were averaged

over, at least, 1000 disorder configurations. In figure 1 we plot

the average participation number < ξ > versus the exponent

α. Calculations were done for m0 = 2 (in units of an arbitrary

elementary mass mu). The averaged participation number

< ξ > was obtained by using an arithmetic average of all

participation within the entire band except the frequencies at

the vicinity ofω = 0. We observe that the participation number

exhibits a non-monotonic behavior with a minimum around

α ≈ 0.75. In this case, the correlation between the connectivity

and mass distributions leads to the strongest enhancement of

Anderson localization, with the average participation number

being roughly 1/2 of the one obtained in the absence of mass-

dilution correlation. In the following, we are going to explore

the characteristics of the eigestates and energy spreading in

such extremal case.

In figure 2 we analyze the spectrum of the participation

number as a function of the mode frequency. We plot ξ

versus ω2 (in units of k0/mu) for N = 200 up to 1600

sites, and the particular extremal case of α = 3/4. Notice

that only the uniform mode (ω = 0) has the participation

number proportional to N , i.e. the introduction of second

nearest neighbor couplings does not promote the appearance

of new extended modes. It is important to notice that a strongly

localized mode appears at a specific high-frequency, evidenced

in the figure inset. The nature of these strongly localized modes

will be discussed in the end of this section.
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Figure 2. Spectrum of the participation number as a function of the
squared mode frequency ω2 for N = 200 up to 1600 sites, at the
particular case of α = 3/4. All modes, except the uniform ω = 0
one are localized, irrrespective of the presence of mass-spring
correlations. There appears a strongly localized mode at a
ressonance frequency ω2 ≃ 1.4, as evidenced in the inset.

To follow the time-evolution of an initially localized

excitation, we solved equation (2) for an initially localized

energy pulse. We considered two distinct types of initial

excitation: a displacement excitation defined by qi(t = 0) =
δi,N/2 and q̇i = 0; and an impulse excitation defined by

q̇i = δi,N/2 and qi = 0. It was shown in the previous literature

that these two initial conditions lead to quite distinct energy

spreading dynamics [23, 24]. The spectral decomposition of

an impulse excitation has a large contribution coming from

the weakly localized low-frequency modes, which results in a

super-diffusive spreading. On the other hand, a displacement

excitation has weaker low-frequency modes and its spreading

is slower (sub-diffusive). We used a fourth order Runge–

Kutta method with δt = 0.001 and a chain with N = 20 000

masses. The energy conservation was checked to ensure

numerical precision. In figures 3(a) and (b) we plot the time-

dependent mean-square displacement M2 and the participation

number ξ(t) versus t for α = 3/4 and a displacement initial

excitation. Our results for M2(t) indicate a sub-diffusive

spreading dynamics at long times M2(t) ∝ t0.5. This result

agrees with previous results found in harmonic chains with

disordered masses and nearest neighbors interactions. The

uniform mode ω = 0 promotes the slow divergence of the

energy wave-packet width. However, the time-dependent

participation number saturates in a finite value thus being

dominated by localized eigenmodes. This feature supports

previous findings showing that a finite fraction of the energy

packet remains trapped near the initial site in a disordered

harmonic chain with nearest neighbors couplings [20]. Our

calculations indicate that the presence of second-neighbors

couplings and mass-spring correlations do not change this

framework. We also addressed the case of an impulse initial

excitation (q̇i(t = 0) = δi,N/2 and qi = 0). In this case M2(t)
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Figure 3. (a) Time dependent mean square displacement M2 and (b) the participation number ξ(t) versus time t for α = 3/4. Calculations
were done for N = 20 000 sites for both initial displacement and impulse excitations.
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Figure 4. Energy profile fi × (i − i0) with i > i0 at four distinct times t = 2000, 4000, 6000 and 8000. Calculations were done for the
correlation exponent α = 3/4 by using (a) N = 20 000 sites and an initial displacement excitation qi = δi,N/2 and (b) N = 30 000 sites and
a initial impulse excitation q̇i = δi,N/2.

displays a super-diffusive spread M2(t) ∝ t1.5 at long times.

Although reaching a larger value, the participation number still

saturates.

In order to develop a deeper understanding of the above

dynamical behavior, we report the energy profile fi × (i − i0)

with i > i0 at four distinct times t = 2000, 4000, 6000 and

8000 (see figures 4(a) and (b)). Calculations were done for

figure 4(a) an initial displacement excitation and figure 4(b)

an initial impulse excitation. We observe that the energy profile

develops a power-law tail fi ∝ (i−i0)
−φ for 0 < (i−i0) < n∗.

Here, n∗ represents the energy wave-packet front. Due to the

finite propagation velocity of the low-frequency modes, this

cutoff grows linearly in time (n∗ ∝ tβ with β = 1). The power-

law exponent governing the decay of the energy wave-packet

is found to be φ = 2.5 in figure 4(a) and φ = 1.5 in figure 4(b).

The scaling behavior of the mean-square displacement

and participation number can be computed analytically by

following heuristic arguments. We consider the wave-packet

to scale as fi(t) = f0(t)f ((i − i0)/n∗) with f ((i − i0)/n∗) ∝
(i − i0)

−φ . In our calculations, a finite fraction of the initial

energy remains trapped close to the initial site, which means

that f0(t) ∝ constant. It is then straightforward to show that

the mean squared displacement shall scale as M2(t) ∝ tβ(3−φ).

The exponents governing the power-law tail of the energy

distribution (φ = 2.5 for the case of an initial displacement

excitation and φ = 1.5 for an initial impulse excitation) are

in full agreement with the respectively reported sub-diffusive

and super-diffusive spread of the wave-packet second moment.

The saturation of participation number can also be understood

following the same scaling argument. It can be written as

4
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Figure 5. (a) The vibrational density of states (DOS) versus ω2 for chains with N = 4000 sites, 1000 distinct disorder
configuration,α = 0.25 up to 1. We observe that the DOS exhibits a narrow peak in the high frequency region signaling a van Hove
singularity associated with an underlying symmetry. (b) The corresponding spectra of the participation number showing that the resonance
mode is strongly localized.

ξ ≈ ξ0 + [
∫ n∗

0
(fi)

2di]−1. ξ0 is a constant that represent the

participation of the energy fraction trapped close to the initial

site. ξ0 is of the order of few lattice spacings. The contribution

coming from the integral over the wave-packet tail is finite

in the cases of displacement and impulse excitations, both

having φ > 1/2. Therefore, ξ(t → ∞) shall remain finite, in

agreement with the previous results from the direct numerical

integration of the motion equations.

Before finishing, we would like to discuss the nature

of the strongly localized mode appearing in the spectrum

of the participation number reported in figure 2. We start

by computing the density of states (DOS) through an exact

diagonalization to obtain the complete frequency spectrum.

The DOS is numerically computed as DOS(ω2) =
∑

ω2
i
δ(ω2

i −
ω2). In figure 5 we plot the DOS versus ω2 for N = 4000 sites,

1000 distinct disorder configuration, α = 0.5, 1, 1.5, 2 and

m0 = 2. For ω ≈ 0 the density of states displays the typical

divergence associated with the uniform mode. However, the

DOS depicts also a diverging singularity at a high frequency.

The DOS singularity is at the same frequency on which the

participation number has a pronounced deep (as shown in

figure 5(b)) for all values of α. These features indicate that

this frequency corresponds to degenerated strongly localized

resonant modes. After considering some possible local

configurations that may result in resonant localized modes,

we found that this resonant mode is distributed in four nearest

neighbor sites, with the following configuration of couplings:

Due to the dilution of the second neighbor couplings, there

is a finite probability of four consecutive sites to have no

second-neighbor couplings among them, but the inner sites

being coupled to sites outside this segment by second neighbor

springs. No second neighbor springs are attached to the outer

sites. In this case, there is a frequency on which the site

displacements remain restricted to this segment. Introducing

the harmonic mode qn = un exp(iωt) in equation (2), this

localized mode obeys the following set of equations:

−mnω
2un = 5

2
k0un − k0un−1 − k0un+1

−mn−1ω
2un−1 = 2k0un−1 − k0un

−mn+1ω
2un+1 = 5

2
k0un+1 − k0un+2 − k0un

−mn+2ω
2un+2 = 2k0un+2 − k0un+1

(6)

The localized resonant mode has un−1 = − un

2
= un+1

2
=

−un+2. This excitation does not propagate outside this

segment, once the resulting force on the outside neighboring

sites remains null. This mode appears at the resonance

frequency

ω2
0 =

4k0

m0(1 + 3−α)
. (7)

For example, for m0 = 2 and α = 0.5 this resonance frequency

is, respectively ω2
0 ≈ 1.2679, in agreement with the DOS and

participation number singularities.

4. Summary and conclusions

In summary, we investigated the role of correlated disorder

in harmonic chains with diluted second neighbors couplings.

We introduced correlations between the disorder distribution

in the second neighbors spring constants and the mass disorder

by considering each mass as a function of the site connectivity

given by mi = m0

(

1 + 1/nα
i

)

, where ni , is the connectivity

of the site i and α is a tunable exponent. By using an exact

diagonalization procedure on finite chains, we showed that the

average participation number of the collective normal modes

achieves a minimum at α ≃ 3/4. This feature indicates that

localization of vibrational modes can be enhanced by a proper

manipulation of local correlations in the disorder distribution.

This seems to be a quite general feature associated with

the nature of collective excitations in lattices with correlated

disorder and can be extended to tight-binding models with

correlated diagonal and off-diagonal disorder. Further, we

showed that, although the participation number of an initial

localized excitation remains finite after a long time evolution,
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the second moment of the energy distribution grows sub-

diffusively for a displacement excitation and super-diffusively

for an impulse excitation, even in the presence of second-

neighbors couplings and local correlations. To develop a

deeper understanding of the distinct dynamics exhibited by

the wave-packet participation number and width, we followed

the time-evolution of the energy distribution unveiling that

it develops a power-law tail with distinct exponents for

displacement and impulse initial excitations. We performed

a detailed scaling analysis to relate the wave-packet scaling

with the asymptotic behavior of the participation number and

the wave-packet dispersion. Finally, we showed that there is

a resonant frequency at which the normal modes are localized

on a finite segment composed of four sites with a specific

configuration of the local couplings that results in a null net

force on the remaining chain. The presence of such resonant

mode is reflected in the spectrum of the participation number

as a pronounced deep, as well as a van Hove singularity on

the density of states. We have analytically demonstrated the

dependence of such resonant frequency on the exponent α

correlating mass and spring disorder. It would be interesting

to extend the present work to investigate the interplay between

mass and spring disorder in higher-dimensional models that

may have a band of extended modes. In this case, the

correlation exponent could also be used to tune the width of

the extended band.
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