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Abstract
We investigate the nature of one-electron eigenstates in power-law-diluted chains for which
the probability of occurrence of a bond between sites separated by a distance r decays as
p(r) = p/r1+σ . Using an exact diagonalization scheme and a phenomenological finite-size
scaling analysis, we determine the quantum percolation transition phase diagram in the full
parameter space (p, σ ). We show that the density of states displays singularities at some
resonance energies associated with degenerate eigenstates localized in a pair of sites with
special symmetries. This model is shown to present an intermediate phase for which there is
classical percolation but no quantum percolation. Quantum percolation only takes place for
σ < 0.78, a value larger than the corresponding one for the Anderson transition in long-ranged
coupled chains with random diagonal disorder. The fractality of critical wavefunctions is also
characterized.

1. Introduction

Anderson theory predicts the absence of extended one-
electron eigenstates in low-dimensional (d < 2) systems
with non-interacting electrons and uncorrelated disorder [1].
Therefore, the width of the time-dependent electronic
wavepacket shall saturate in a finite region around the
initial position after a long time evolution, especially in
one-dimensional systems where the effects of disorder
are more pronounced. In three-dimensional lattices, weak
disorder promotes the localization of the high-energy eigen-
modes [1–3]. It was demonstrated that two mobility edges
appear separating localized states from extended states [4].
Recently, it has been shown that low-dimensional disordered
systems can support extended states when special short-
range [5–18] or long-range [8–18] correlations are present
in the disorder distribution. From the experimental point of
view, these theoretical predictions were useful to explain
the transport properties of semiconductor superlattices [13]
and the microwave transmission spectra of a single-mode
waveguide with intentional correlated disorder [16].

Another ingredient that can promote the breakdown of
Anderson localization in low-dimensional systems is the
presence of long-range hoppings. In [19], it was shown

that the dynamics of an electron in the one-dimensional
Anderson model with non-random hoppings falling off
as some power (1/rα) becomes faster for 1 < α < 2.
For a low degree of disorder, the exponent α = 1.5
indicates the onset for fast propagation, in agreement with
the reported delocalization of states located close to one
of the band edges [20–22]. Another interesting class of
disordered system with long-range hoppings is the power-law
random band matrix (PRBM) model [23–26]. This model
describes one-dimensional electronic systems with random
long-range hopping amplitudes with standard deviation
decaying as 1/rα for sites at a distance r � b, where
b is a typical bandwidth. It was shown that this model
presents an Anderson-like transition at α = 1, with all
states being localized for α > 1 and extended for α <
1. The Anderson transition in a 1D chain with random
power-law decaying hopping terms and non-random on-site
energies was numerically characterized in [27]. Vibrational
and one-magnon excitations in one-dimensional systems
with power-law decaying long-range couplings have also
been shown to depict a localization–delocalization transition
[28, 29].

A relevant variation of the Anderson localization is the
quantum percolation problem. Due to its simplicity, several
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applications of quantum percolation concepts have been used
to investigate the transport properties of granular systems
and wave propagation in random binary media, as well as
in proposals of new nanostructured devices [30–33]. The
quantum percolation phenomenon incorporates both classical
percolation features and quantum transport properties in
disordered systems. In classical percolation, the minimal
condition for the transport is the existence of a spanning
cluster which appears for bond probabilities above a
minimum threshold pc. The quantum percolation problem
is correlated to the properties of transmission and reflection
of the wavefunction throughout the irregular borders of the
connected cluster. Quantum percolation occurs above pq,
which is usually larger than pc.

The problem of quantum percolation in 1D disordered
systems with long-range hopping terms has been recently
addressed [34, 35]. In [34], the authors have considered
a bond-diluted model where the links are activated with
probability p(r) = p/r1+σ , where p is the fraction of
nearest-neighbor bonds, σ controls the long-range character
of the couplings and r is the distance between the two sites
to be connected with probability p(r). For this model, a
spanning cluster of connected sites rises above a classical
percolation threshold pc. For σ > 1 there is no spanning
cluster for any finite dilution of the first-neighbor bonds.
In [35], the particular case of p = 1 was reported. Using
an exact diagonalization scheme on finite chains, it was
computed the spreading of an initially localized wavepacket
and the time-dependent participation number, as well as
the return probability. The numerical results indicated the
existence of extended states below a critical value of the decay
exponent σ .

In the present work, we advance in the characterization
of the power-law bond-diluted Anderson chain model by
studying the quantum percolation transition in the full range of
first-neighbor bond probability. Using direct diagonalization
of the Hamiltonian matrix on finite chains, we will determine
the density of states and nature of the one-particle eigenstates.
The density of states will be shown to depict singularities
related to specific degenerate localized modes. Using a
finite-size scaling analysis based on phenomenological
finite-size scaling analysis, we will determine the critical
value of the decay exponent σ below which extended modes
appear as a function of the first-neighbor bond probability
p. We will show that there is a phase on which, although
classical percolation is supported by a spanning cluster, all
electronic eigenstates are exponentially localized. Finally, the
fractal exponent related to the participation number of the
critical eigenstates will be reported.

In section 2, we will present our Hamiltonian model,
define the main quantities we will use and describe the
procedure we will employ to investigate the quantum
percolation transition. In section 3, we present our main
results concerning the density of states, the participation
number, its finite-size scaling, and the phase diagram and
fractal exponent of the critical participation function. In
section 4 we summarize and draw our main conclusions.

2. Model and formalism

The quantum percolation problem in a bond-diluted chain
with non-random long-range hopping amplitudes can be
represented by an one-electron tight-binding Hamiltonian
with a single orbital per site. In the atomic orbital
wavefunction basis, it is expressed as

H =
N∑

n=1

εn|n〉〈n| +
N∑

n6=m

h(r)|n〉〈m|, (1)

where |n〉 represents the state with the electron localized at
site n. In what follows, we will consider closed chains with
N sites for which r is the minimal distance between sites
n and m. In the present random bond Anderson model, the
on-site potentials εn are site-independent and in equation (1)
it is taken to be εn = 0 without any loss of generality.
Long-range disorder is introduced by assuming the hopping
amplitudes h(r) to be distributed following a power-law
decaying distribution. The probability of occurrence of a bond
between sites n and m decays as

p(r) = p/r1+σ (2)

where h(r) = 1 with probability p(r) and h(r) = 0 with
probability 1− p(r). For σ > 1 this model is expected to have
features similar to those presented by models with random
short-ranged couplings [34, 35, 37]. For σ < 0 the bond
distribution is not normalizable and an artificial cutoff has
to be added. In this regime, a percolation cluster emerges for
any finite concentration p [37]. In our study, we are interested
in providing the complete phase diagram concerning the
quantum percolation transition in the (p, σ ) parameter space
in the long-ranged regime 0 < σ < 1 on which the bond
distribution is normalizable. The main physical quantities
will be obtained by the direct diagonalization of the
Hamiltonian on finite chains which provides all eigenstates
and energy eigenvalues for each disorder realization. The
diagonalization is restricted to the largest cluster of connected
sites. The participation function plays a central role in the
characterization of the spatial extension of the one-electron
eigenstates. For a particular disorder configuration ν and
eigenstate, the participation function is defined as the inverse
of the second moment of the probability density:

ξ j,ν
=

1∑N
n=1 |f

j,ν
n |

4
(3)

where f j,ν
n is the amplitude at site n of the jth eigenstate

from the νth disorder realization. ξ diverges proportional to
the number of sites (N) for extended states and it is roughly
size-independent for exponentially localized ones. According
to the finite-size scaling hypothesis, the participation function
at the critical point scales as ξ ∝ NDf , with Df < 1 being
a characteristic fractal dimension of the critical eigenstates.
In our numerical computation, we performed an exact
diagonalization of the Hamiltonian matrix corresponding to
the spanning cluster on chains with sizes ranging from
N = 200 up to N = 1600 sites. We averaged ξ j,ν using all
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eigenstates computed from distinct disorder realizations:

〈ξ(N, p, σ )〉 =
1

MN

M∑
ν=1

N∑
j=1

ξ j,ν . (4)

We have used at least NM = 1 × 105 states for each
chain size. By fixing the value of the first-neighbor bond
concentration, the critical value of the decay exponent σ ,
below which extended states appear, can be estimated using
a phenomenological finite-size scaling analysis.

At the critical point, the participation function scales
sub-linearly with the system size 〈ξ〉 ∝ NDf , where Df
is a characteristic fractal dimension. According to the
single-parameter scaling hypothesis, in the vicinity of the
critical point σc, the participation function shall obey the
scaling form 〈ξ〉 = NDf g[(σ−σc)N1/ν

], where g(x) is a proper
scaling function and ν is the correlation length exponent.
Such scaling form of critical quantities has been previously
explored in a phenomenological finite-size scaling analysis
that provides accurate estimates of the critical point and
exponents [37, 38]. The procedure is based on the behavior
of the following set of auxiliary functions:

2(N1,N2, p) = log(〈ξ(N2, p)〉/〈ξ(N1, p)〉)/ log(N2/N1). (5)

According to the finite-size scaling hypothesis, these
functions shall intercept at a common point for any pair of
sizes (N1,N2), with a possible small spread due to corrections
to scaling. The crossing signals the critical point. The value of
2 at the critical point corresponds to the fractal dimension Df.
Therefore, the above procedure allows for a direct estimate of
the fractal dimension of the critical wavefunctions besides the
critical point. This feature brings an advantage with respect to
methods based on the relative fluctuations of the participation
number [39, 40] whose scale-invariant point does not provide
a direct information of the wavefunction fractality. In the
present model, one expects that auxiliary 2 functions, when
plotted as a function of the power-law exponent σ , shall have a
scale-invariant point below σ = 1 which delimits the effective
onset of the long-range character of the couplings [34, 35, 37].

In addition, we computed the normalized density of states
(DOS) defined as DOS(E) = (1/MN)

∑
j,νδ(E − Ej,ν). For

extended states, the level spacing displays small fluctuations
due to level repulsion. On the other hand, wavefunctions of
localized states have a very small overlap. These states do
not interact effectively and, therefore, there is no correlation
between them. In this case, the density of states depicts
increased fluctuations. We can use this concept to provide
some hints about the nature of electronic states of the system
under study.

3. Results and discussion

3.1. DOS and degenerate localized states

We start our analysis by computing the density of states for
two sets of parameters (p = 1, σ = 0.5) and (p = 1, σ = 1)
as shown in figure 1. Note that, in the (p = 1, σ = 0.5)
case, the density of states is relatively smooth, signaling the
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Figure 1. Density of states (DOS) as a function of energy for a
chain with N = 800, p = 1, σ = 0.5 and 1. For σ = 1 the density of
states displays strong fluctuations, indicating localized states even in
the presence of a spanning cluster (geometric percolation). For
σ = 0.5 the DOS is smoother, indicating the presence of extended
states. The singularities around E = −1 and 0 are related to
degenerate localized states.

possible presence of extended states. In the other case (p =
1, σ = 1), we observe larger fluctuations of the density of
states, a clear signature that localized states are playing a
major hole. It is interesting to notice that the density of states
shows some singularities, particularly visible in the localized
case. Previous studies of percolation in quantum simple cubic
networks, with dilution of both links and sites, have also
observed the presence of peaks in the density of states [36].
These were shown to be related with resonance energies with
wavefunctions localized in regions near the boundary of the
percolating cluster. In our model, we can clearly identify two
resonance energies at E = 0 and −1. The states with energy
E = −1 correspond to states localized in pairs of sites (a, b)
that are connected to the same set of network sites and are
directly interconnected. In this case, we can write

H|a〉 = |b〉 +
∑

j

|j〉, (6)

and

H|b〉 = |a〉 +
∑

j

|j〉, (7)

where the sum is taken over all sites that are connected to the
pair (a, b). By subtracting the above equations, it is easily to
observe that the antisymmetric state |8〉 = (1/

√
2)(|a〉 − |b〉)

is an eigenstate of the Hamiltonian with eigenvalue E = −1.
The intensity of the corresponding peak in the density of states
is related to the probability of this structure to occur along the
chain. The resonance at E = 0 corresponds to states localized
in pairs of sites (a, b) that, despite being connected to the same
set of network sites, they are not directly interconnected. Thus,
we have

H|a〉 =
∑

j

|j〉 (8)
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Figure 2. Participation function versus energy for N = 400,
N = 800, p = 1, σ = 0.5 and 1. Data have been averaged over 400
distinct disorder configurations. For σ = 0.5, the participation
function scales linearly with the system size, thus indicating the
predominance of extended states. For σ = 1, the participation
function is roughly independent of the system size, signaling the
absence of extended states.

and

H|b〉 =
∑

j

|j〉. (9)

In this case, the antisymmetric state |8〉 = (1/
√

2)(|a〉 − |b〉)
is an eigenstate of the Hamiltonian with eigenvalue E = 0. The
peak in the density of states corresponding to this resonance is
smaller than the peak at E = −1, since this structure appears
along the chain less frequently.

3.2. Quantum percolation transition

In figure 2, we show the energy spectrum of the participation
function. These data were obtained through the direct
diagonalization of the Hamiltonian for chains with sizes N =
400 and 800. Calculations were averaged over 400 distinct
disorder realizations. In this figure, we have p = 1 for which
all first-neighbor pairs are connected. In this case, there
is geometric percolation for any value of σ . However, the
disorder present in the random coupling of non-first-neighbor
pairs can cause the localization of the electronic states. For
σ = 1 the participation function is roughly independent of
the chain size for the whole energy band, indicating that all
electronic states are localized. For σ = 0.5, the participation
function scales linearly with the system size. It is a clear
signature of extended states. Therefore, our results suggest
that there is a critical value σc at which a quantum percolation
transition takes place. The dips at E = −1 and 0 reflect the
presence of degenerate localized states, as discussed above.

To locate the critical point, we measured the average
participation 〈ξ〉 of the one-particle eigenstates. In figure 3,
we show data for the averaged participation function versus
the exponent σ for p = 1 computed using 400 distinct
configurations of disorder and different system sizes (N = 400

0 0.2 0.4 0.6 0.8 1
σ

0

100

200

300

400

500

600

<
ξ

>

N=200
N=400
N=800
N=1600

p=1

Figure 3. Average participation function for p = 1 versus the
exponent σ computed using 400 distinct configurations of disorder
and different system sizes (N = 400 up to 1600). Note the change
from the regime of small σ � 1, where the participation function is
proportional to the chain size, to the localized regime of large
σ ' 1, where 〈ξ〉 is weakly dependent on N.

up to 1600). Note the change from the regime of extended
states at small σ , where the participation is proportional to
the chain size, to the localized regime where 〈ξ〉 is roughly
size-independent. By using a set of the auxiliary functions
2(N,N′, σ ) (see equation (5)), we can precisely locate the
critical point σc(p) as the intersection of curves for different
system sizes. Two representative results of this crossing are
shown in figure 4 for p = 0.5 and 0.75.

The above numerical finite-size scaling method was
used to obtain the complete phase diagram of the quantum
percolation transition in the (p, σ ) parameter space. The
results are reported in figure 5 and compared with the phase
diagram of the classical percolation counterpart model [37].
The small error bars in the estimated quantum percolation
threshold results from the small spread of the crossing point of
distinct auxiliary2 functions. Below the quantum percolation
threshold pc(σ ) all states are localized while above it extended
states emerge. As expected, the quantum percolation threshold
(pquantum) exceeds the equivalent classical one (pclassical) for
all values of σ within the interval [0, 1]. Therefore, there
is a finite region of the parameter space at which there is
no quantum percolation although a spanning cluster supports
classical percolation. In the region of small σ the difference
between pquantum and pclassical is small, but it grows as σ
grows. We can observe that quantum percolation is absent for
0.78 < σ < 1 even for p = 1 where all first neighbors are
connected.

3.3. Fractal dimension of the critical states

Before finishing, we also report the fractal dimension Df at the
critical point within the entire range 0 < p < 1, as shown in
figure 6. In the limit p→ 1, Df < 1 indicates that the critical
eigenstates display a fractal topology, i.e. they do not occupy
the entire connected system. In this limit the connected sites
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Figure 4. 2(N1,N2, σ ) as a function of the decay exponent σ for
different pairs of system sizes, p = 0.5 and 0.75. Calculations were
done using over than 20 000 configurations of disorder. The
interception point signal the quantum percolation transition at σc(p).

span the entire lattice. The present finding of Df < 1 in this
limit is consistent with the well-known fractal character of the
critical wavefunctions in regular lattices. In the opposite limit,
p→ 0, the fractal dimension of the critical states becomes of
the order of the fractal dimension of the percolating cluster
df ' 0.35 [37], indicating that the critical states occupy
uniformly the spanning cluster. This represents the limit of
weak disorder for which the one-particle eigenstates spreads
over the entire set of connected sites, with the quantum and
classical percolation transition taking place simultaneously as
indicated in the reported phase diagram (figure 5).

4. Summary and conclusion

In summary, we studied a one-dimensional tight-binding
model with long-ranged hopping amplitudes, where the
probability of connection between sites at a distance r is
given by p(r) = p/r1+σ . By using exact diagonalization of

0 0.2 0.4 0.6 0.8 1
σ

0

0.2

0.4

0.6

0.8

1

p(
σ)

Quantum 

Classical

Figure 5. The estimated phase diagram for the long-range quantum
percolation model with power-law decaying bond concentrations.
Critical points were estimated from direct diagonalization of the
bond matrix of the largest cluster and a phenomenological finite-size
scaling analysis. The results are compared with the phase diagram
of the classical counterpart model [37]. Note that there is a region in
which there is classical percolation but no quantum percolation.

0.2 0.4 0.6 0.8 1
p

0.3

0.4

0.5

0.6

D
f

Figure 6. Fractal dimension of the critical wavefunctions as a
function of the fraction of first-neighbor couplings p. In the limit of
p→ 1, Df < 1 indicates that the critical states display a fractal
topology. In the other extreme, where p→ 0, the fractal dimension
of the critical wavefunctions is similar to the fractal dimension of
the classical percolating cluster [37].

the Hamiltonian, we analyzed some features of the density
of states and participation function of all eigenstates. The
localized or extended nature of the eigenstates was shown
to be reflected in the statistical fluctuations of the density
of states, as well as in the dependence of the participation
function with the system size. Within the density of state
analysis, we have shown the existence of singularities at some
resonance energies and demonstrated these to originate from
degenerate states localized in some local configurations with
special symmetries.
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Using a phenomenological finite-size scaling analysis,
the complete phase diagram in the (p, σ ) parameter space
was obtained. The critical concentration p(σ ) in this quantum
percolation model was shown to be larger than the geometric
percolation critical threshold. Thus, this model presents a
phase for which, despite the existence of a percolating cluster,
all the electronic states remain localized. Extended states arise
in this model for σ < 0.78. For p � 1 the fractal dimension
of electronic states at the critical point was found to be of the
same order of the fractal dimension of the classical percolating
cluster. At p = 1, the fractal dimension is smaller than the size
of the chain, indicating that the critical state does not occupy
the percolating cluster uniformly.

It is important to emphasize that the well-known
1D Anderson model with random on-site energies and
non-random long-range hopping requires a slower decay of
the hopping amplitudes to support extended states (σ <

0.5) [20–22]. Further, the power-law random band model with
random off-diagonal amplitudes with variance decaying as a
power law requires σ < 0 for the emergence of delocalized
states [23–26]. Our present model is a clear example that the
quantum percolation transition has not always a direct relation
with the usual Anderson transition. Further developments
would be in order to establish the full set of critical exponents
as a function of the decay exponent of the long-ranged
couplings.
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