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Abstract
In this paper we study a one-dimensional ternary harmonic chain with the mass distribution
constructed from an Ornstein–Uhlenbeck process. We generate a ternary mass disordered
distribution by generating the correlated Ornstein–Uhlenbeck process and mapping it into a
sequence of three different values. The probability of each value is controlled by a fixed
parameter b. We analyze the localization aspect of the above model by numerical solution of
the Hamilton equations and by the transfer matrix formalism. Our results indicate that the
correlated ternary mass distribution does not promote the appearance of new extended modes.
In good agreement with previous work, we obtain extended modes for b→∞; however, we
explain in detail the main issue behind this apparent localization–delocalization transition. In
addition, we obtain the energy dynamics for this classical chain.

1. Introduction

The energy transport in nonperiodic classical chains is a very
interesting issue with several lines of investigation [1–21].
The key ingredient behind the energy flux in low-dimensional
nonperiodic classical lattices is the nature of the vibrational
modes. The vibrational eigenstates of a one-dimensional
disordered harmonic chain with N random masses can be
mapped onto a one-electron tight-binding model [1]. It
has been demonstrated that most of the normal vibrational
modes are localized and there are few low-frequency modes
which are not localized, whose number is of the order of
√

N [1, 14]. Furthermore, by using analytical arguments,
it has also been shown that the transport of energy in
mass disordered harmonic chains is strongly dependent on
the non-scattered vibrational modes as well as the initial
excitation [15]. Calculations have indicated that uncorrelated
random chains have a super-diffusive behavior for the
second moment of the energy distribution (M2(t) ∝ t1.5)
for impulse initial excitations, while for initial displacement
excitations a sub-diffusive spread takes place (M2(t) ∝
t0.5). The dependence of the second moment spread on

the initial excitation was also obtained in [22]. Within this
context, [16–20] have demonstrated that this framework
can change if some correlations are introduced in the
disorder distribution. It was obtained that besides these
low-frequency extended modes, a new set of high-frequency
non-scattered modes can be found if short- [16, 17] or
long-range correlations [18–20] in the disorder distribution
(spring constants or masses) are considered. In fact, in [18] a
study was presented of the nature of the collective vibrational
modes in harmonic chains with long-range correlated random
masses, with spectral power density S ∝ k−α . By using the
transfer matrix the emergence of a phase of low-energy
extended collective excitations in the strong correlation
regime (α > 1) was observed. Moreover, the authors found
that the energy second moment M2(t) displays a crossover
from an anomalous sub-diffusive or super-diffusive regime
(depending on the initial displacement or impulse excitation,
respectively) to an asymptotic ballistic behavior.

Previous work on the transport properties in systems
with correlated disorder has been carried out by considering
the disorder distribution uniformly chosen in a finite range
[W1,W2]. Within the context of one electron in a disordered
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chain some authors have considered models where the
on-site energy can assume two or three different values
i.e., the binary and ternary models respectively [23, 24]. In
particular, the Anderson model with long-range correlated
disorder chosen as a ternary sequence was studied in [24].
In the case of the on-site energy distribution generated as
an uncorrelated random sequence, the system is naturally
an insulator. However, the authors have shown that, if a
long-range correlated ternary on-site energy distribution is
considered, an Anderson localization–delocalization phase
transition can be observed [24]. More recently, the effect of
long-range correlations in the random ternary sequence of
capacitances of a classical transmission line (TL) has been
studied by Lazo and Diez [25, 26]. To generate the ternary
correlated distribution the Fourier filtering method [25] and
the Ornstein–Uhlenbeck (OU) process [26] were used. In both
cases a transition was observed from the non-conducting to
the conducting state of the TL induced by strong correlations.

In this paper we will study the energy transport in a
harmonic chain with correlated disorder distribution. Here,
we study a one-dimensional ternary harmonic chain with the
mass distribution constructed from an Ornstein–Uhlenbeck
process. We generate a ternary mass disordered distribution
by generating the correlated Ornstein–Uhlenbeck process and
mapping it into a sequence of three different values. The
probability of each value is controlled by a fixed parameter b.
In that way, we will generate a ternary mass distribution with
long-range correlations. We analyze the localization aspect
of the above model by numerical solution of the Hamilton
equations and by the transfer matrix formalism. Our results
indicate that the correlated ternary mass distribution does not
promote the appearance of new extended modes. In good
agreement with previous work, we obtain extended modes
for b→∞; however, by using a numerical calculation of the
local strength of disorder, we will explain in detail the nature
of the phase transition found here. In addition, we obtain the
energy dynamics for this classical chain.

2. Model and formalism

We start by considering a harmonic chain of N masses, for
which the equation of motion for the displacements qn =

un exp iωt with vibrational frequency ω is [14, 16]

(ηn−1 + ηn − ω
2mn)un = ηn−1un−1 + ηnun+1. (1)

In our calculations, we will use units such that all elastic force
couplings ηn = 1, and the random site masses mn will be
taken from an Ornstein–Uhlenbeck (OU) process [26]. The
OU process is defined by the stochastic differential equation

dx

dt
= −γ x(t)+

√
Cβ(t), (2)

where γ is the viscosity coefficient, C is the diffusion
coefficient and β(t) is the stochastic term [26]. β(t) is a
Gaussian white noise generated by the Box–Muller process
with the following properties: 〈β(t)〉 = 0 and 〈β(t)β(t+τ)〉 =
δ(τ ). This stochastic process contains correlation between
each step defined by 〈x(t)x(t+ τ)〉 = C

2γ e−γ τ [26]. In order to

generate the diagonal disorder from the OU process we will
consider the numerical formalism obtained in [27] based on
the discrete version of equation (2). In the discrete form, x(t) is
written as xn, where n denotes the time step number (t = n1t).
Therefore, the discrete form of equation (2) is given by [27]

xn+1 = (e−γ1t)xn +

[√
C

2γ
(1− e−2γ1t)

]
βn. (3)

Using the Box–Muller algorithm we calculate βn in the
following way:

βn =

(√
2 ln

1
rn

)
cos 2πan, (4)

where rn and an are uniform random numbers defined in the
interval [0, 1]. In addition, we normalize the sequence xn to
impose zero average and keep the variance equal to unity.
Following [26], we will consider C = γ 2 and, therefore, the
degree of correlation of the OU process becomes controlled by
a single parameter γ . For γ →∞ the OU sequence evolves
into the Gaussian white noise. For γ → 0 the degree of
correlation within the stochastic sequence increases. In [27,
26] it was shown that the OU sequence exhibits a spectral
power density S(f ) ∝ 1/f 2 for γ → 0. Using the normalized
sequence xn generated by the OU process, we will construct a
ternary mass distribution as follows:

mn =


0.5 if xn < −b,

1.0 if − b ≤ xn ≤ b,

1.5 if xn > b,

(5)

where b > 0 controls the probability of each possible value of
the mass value. We would like to emphasize the meanings of
the two tunable parameters γ and b. The first one controls the
degree of correlation in the disorder distribution considered,
i.e., the Ornstein–Uhlenbeck process. For sufficiently small γ
we are dealing with a strongly correlated disordered sequence.
On the other hand, the b parameter defines the specificities
of the mapping that we have used in the generation, from
the OU process, of a discrete mass disordered sequence. For
b = 0 we will map the OU process in a binary random
sequence of two masses. For b→ ∞ we will deal with an
ordered sequence of identical masses. We are interested in
studying in detail the roles played by both parameters on the
localization aspects and energy dynamics of harmonic chains.
We should stress again that some authors have obtained
an Anderson localization–delocalization phase transition in
low-dimensional systems with OU disorder at the limit of
γ → 0 and b > 4 [24–26]. We are interested in studying this
possibility within the context of a harmonic chain.

2.1. Localization properties

To reveal the degree of localization we will use the
localization length λ. The best numerical method for
accurately computing localization lengths in nonperiodic
systems is the transfer matrix method (TMM). The TMM
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is obtained by using a matrix recursive reformulation of the
scaled displacement equation (equation (1))(

un+1

un

)
=

(
2− mnω

2
−1

1 0

)(
un

un−1

)
. (6)

For a specific frequency ω, a 2×2 transfer matrix Tn connects
the displacements at the sites n − 1 and n to those at the site
n+ 1,

Tn =

(
2− mnω

2
−1

1 0

)
. (7)

Once the initial values for u0 and u1 are known, the value of
un can be obtained by repeated iterations along the chain, as
described by the product of transfer matrices

QN =

N∏
n=1

Tn. (8)

The localization length of each vibrational mode is defined
by [14, 16]

λ =

{
lim

N→∞

1
N

log
|QNc(0)|
|c(0)|

}−1

, (9)

where c(0) =
(

u1
u0

)
is a generic initial condition. Typically,

108 matrix products were used to calculate the localization
length.

2.2. Energy transport

In order to study the time evolution of an initially localized
energy pulse, we calculate the second moment of the
energy distribution [15, 22]. This quantity is related to the
thermal conductivity by Kubo’s formula [15]. The classical
Hamiltonian H for a harmonic chain can be written as

H =
N∑

n=1

hn(t), (10)

where the energy hn(t) at site n is given by

hn(t) =
P2

n

2mn
+

1
4
[(Qn+1 − Qn)

2
+ (Qn − Qn−1)

2
]. (11)

Here Pn and Qn define the momentum and displacement of the
mass at the nth site. The fraction of the total energy H at site
n is given by hn(t)/H and the second moment of the energy
distribution, M2(t), is defined by [15]

M2(t) =
N∑

n=1

(n− n0)
2
[hn(t)/H], (12)

where an initial excitation is introduced at the site n0 at t = 0.
Using the eighth-order Runge–Kutta method, we solve the
Hamilton equations for Pn(t) and Qn(t) and calculate M2(t).
The second moment of the energy distribution, M2(t), has
the same status as the mean-square displacement of the
wave-packet of an electron in a solid [15, 22].

Figure 1. Numerical calculation of the two-point autocorrelation
function defined by C(r) = [1/(N − r)]

∑N−r
n=1 xnxn+r. We can see

that as γ is decreased the Ornstein–Uhlenbeck (OU) process
displays an increasing of degree of correlation.

3. Results

3.1. Localization properties

Initially, to compare some statistical properties of the
Ornstein–Uhlenbeck (OU) distribution, we compute the
autocorrelation function (C(r) = [1/(N − r)]

∑N−r
n=1 xnxn+r)

of the sequence {xn} (see figure 1). We can see clearly
that the correlation function decays more slowly when γ is
decreased. For γ � 0 we recover an uncorrelated random
process. In order to calculate the typical localization length
of the eigenstates, we use the transfer matrix technique for
a long chain with N masses (N ≈ 108). In this method, the
self-averaging effect automatically takes care of statistical
fluctuations. We estimate and control these fluctuations by
following the deviations of the calculated eigenvalues of
two adjacent iterations. Our data have statistical errors of
less than 2%. In figures 2(a) and (b) we show data for the
localization length λ versus the squared frequency ω2 for a
harmonic chain with OU mass disordered distribution with
γ = 1 and 5 and b = 0.25, 0.5, 0.75 and 1. All calculations
were averaged over 100 disorder configurations. For γ =
1 and 5 the localization length scales in proportion to the
system size only for ω = 0. For γ � 0 we obtained results
compatible with a standard uncorrelated random harmonic
chain. In figures 2(c)–(e) we show results for the localization
length λ versus the squared frequency ω2 for a harmonic
chain with OU mass disordered distribution with γ = 0.1,
0.01, 0.001 and b = 0.25, 0.5, 0.75, 1. In general, we can see
that the localization length is greater than in the previous
case ( i.e. figures 2(a) and (b)). However, in spite of the
localization length increasing as the γ is decreased, only the
zero frequency mode remains extended. In figure 2(f) we
can see a finite size scaling of the localization length for
γ = 0.001. Calculations indicate that only for ω = 0 does
the localization length diverge in proportion to the system
size (λ(ω = 0) ∝ N). Some authors have considered ternary
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Figure 2. ((a)–(e)) Localization length λ versus ω2 for a harmonic chain with an OU mass disordered distribution with γ = 1 (a), 5 (b),
0.1 (c), 0.01 (d) and 0.001 (e) and b = 0.25, 0.5, 0.75 and 1. (f) Finite size scaling of the localization length for γ = 0.001, b = 0.5 and
ω2
= 0, 0.01 and 0.1. Calculations were made by using N ≈ 108 and averaged over 100 disorder configurations. Our calculations indicate

that for γ � 0 the harmonic chain considered here displays behavior similar to a harmonic chain with uncorrelated disorder distribution.
We can see that the localization length increases as γ is decreased; however, only the zero frequency mode remains extended.

Figure 3. (a) Scaled localization length λ/N for ω2
= 0.25 versus b. Calculations were made for γ = 0.001 and system size N = 2× 107

to 108 masses. We can see clearly that for b ≤ 4 the scaled localization length decreases as the system size increases, thus indicating
localized states. For b > 4 the fine data collapse obtained indicates extended vibrational modes. (b) Numerical calculations of the local
disorder strength in a segment with L0 masses. For b > 4 the local disorder strength goes to zero; therefore, our calculations indicate that the
apparent Anderson localization–delocalization transition obtained in (a) is, in fact, a disorder–order phase transition.

chains in the recent past [23–26]. In general, they obtained
extended modes at the limit of large b. We will study here
the possible appearance of extended states at the same limit.
We will consider the nonzero frequency region. In figure 3(a)
we show the scaled localization length λ/N for ω2

= 0.25
versus b. Calculations were made for γ = 0.001 and system
size N = 2 × 107 to 108 masses. We can see clearly that for

b ≤ 4 the scaled localization length decreases as the system
size increases, thus indicating localized states. For b > 4
we obtained a fine data collapse for the scaled localization
length. This feature is a clear signature of extended vibrational
modes. These results are in good agreement with previous
calculations in [24–26] on the transport in ternary disorder
distributions with strong long-range correlations. However,
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Figure 4. (a) Localization length λ versus γ for b = 0.25, 0.5, 0.75 and 1. Our results indicate that the localization length scales in
proportion to γ 0.5. (b) The effective amount of disorder in the chain calculated by using the integrated Fourier transform (IFT). Calculations
of IFT versus γ were made for b = 0.25, 0.5, 0.75 and 1 and N = 226 masses. Our calculations indicate that IFT ∝ γ 0.25(2). The scaling
behavior of the IFT associated with the well known dependence of λ on the amount of disorder corroborates the results obtained in (a)
(i.e., λ ∝ 1/W2

∝ 1/IFT2
∝ 1/γ 0.5).

her we will discuss these results by examining the intrinsic
properties of the ternary sequence. We analyze some local
properties of the ternary mass correlated disorder distribution.
Let us compute the local standard deviation 1L0 of the mass
distribution of a segment with L0 masses. The local standard
deviation 1L0 is defined by [28]

1L0 =

(
M∑

k=1

1k,L0

)
/M, (13)

where

1k,L0

=

√√√√√ n=kL0∑
n=(k−1)L0+1

(mn)2/L0 −

(
kL0∑

i=(k−1)L0+1

mn/L0

)2

,

(14)

and M = N/L0. 1L0 is a measurement of the local disorder
strength in a segment with L0 masses. In figure 3(b) we plot
1L0 versus b computed by using equations (13) and (14) in a
ternary mass correlated disorder distribution with γ = 0.001,
1 and N = 107.1L0 decreases substantially as the b parameter
is increased. In particular, for b > 4 the local disorder strength
goes to zero. Therefore, the existence of extended states for
b > 4 is related to the decrease of the amount of disorder.
Our results indicate that the phase transition obtained at about
b ≈ 4 is not an Anderson transition. For b > 4, the system
becomes an ordered harmonic chain. In figure 4(a) we study
the scaling of the localization length with the correlation
degree γ . We show λ versus γ for b = 0.25, 0.5, 0.75 and 1.
Our results indicate that the localization length is proportional
to γ−0.5 within the range of γ used in our calculations
(γ = 10−7 to 0.1). We can understand this result by using an
effective measure for the roughness of the mass distribution
of our harmonic chain. Following [29, 30], we will consider
the integrated Fourier transform (IFT) defined by IFT =

∫ kmax
0 mk dk, where mk represents the Fourier transform of

the mass distribution {mn}. We can see that an uncorrelated
random mass distribution with γ � 0 will have a large
IFT due to its noise-like behavior. On the other hand, more
regular structures with γ → 0 will display a narrower Fourier
spectrum and consequently a smaller IFT . In figure 4(b)
we plot the IFT versus γ for b = 0.25, 0.5, 0.75 and 1
and N = 226 masses. Our calculations indicate that IFT ∝
γ 0.25(2). We can use the scaling behavior of the integrated
Fourier transform (IFT) and scaling arguments to explain
the divergence of the localization length with γ obtained in
figure 4(a). It is well known that in a one-dimensional chain,
the localization length diverges as λ ∝ 1/W2, where W is the
degree of disorder. Since the integrated Fourier transform is
a qualitative measurement of the disorder in the lattice, we
can write λ∝ 1/IFT2

∝ 1/γ 0.5, thus corroborating the scaling
behavior obtained in figure 4(a).

3.2. Energy dynamics

We now show our results on the energy spread in this
harmonic chain with Ornstein–Uhlenbeck correlated disorder.
We will start by solving the Hamilton equations for an initial
impulse excitation at the center of the chain (i.e. Pn = δn,N/2
and Qn = 0). The numerical solution was made by using
the eighth-order Runge–Kutta method with time step 1t =
0.005 (see [31] for more detail). The energy conservation was
checked to ensure numerical precision. In figures 5(a) and (b)
we plot the scaled second moment M2(t)/tκ(γ ) as a function
of time for γ = 1, 0.1, 0.01 and 0.001, b = 0.25 and 0.5
and N = 300 000 masses. We can see clearly that κ varies
considerably with γ . For large values of γ we obtained exactly
the same results as those expected for a harmonic chain
with uncorrelated disorder, κ ≈ 1.5 [15, 22, 21]. However,
as the degree of correlation is increased (i.e., γ goes to
zero) the energy spread becomes slower, with κ < 1. This
sub-diffusive behavior is in contrast with the fast dynamics
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Figure 5. ((a), (b)) Scaled second moment M2(t)/tκ(γ ) as a function of time for γ = 1, 0.1, 0.01 and 0.001, b = 0.25 and 0.5 and
N = 300 000 masses. The exponent of the second moment κ varies considerably with γ . For large γ we obtained exactly the same results as
expected for a harmonic chain with uncorrelated disorder, κ ≈ 1.5 [15, 22, 21]. However, as the degree of correlation is increased (i.e., γ
goes to zero) the energy spread becomes slower, with κ < 1. To understand this slower dynamics even in the presence of correlation within
the disorder distribution we will focus on the scaling behavior of the localization length around the resonance at the bottom of the band
(ω = 0). In (c) we plot the localization length versus ω at the bottom of the band. Calculations were made for N = 108 masses, γ = 5 and
0.01 and b = 0.25, 0.5, 0.75 and 1. For γ = 5 we recover an uncorrelated random harmonic chain with λ ∝ ω−2. This result is in good
agreement with the super-diffusive behavior of the second moment, M2 ∝ t1.5, found in (a) and (b). However, for γ = 0.01 we obtained a
slow divergence for the localization length around ω = 0, thus corroborating the slower dynamics obtained in (a) and (b) for γ → 0.

found in [18–21]. The main issue behind this feature is the
scaling of the localization length around the bottom of the
band (ω = 0). In [15] it was demonstrated that the spread
of the energy in a disordered harmonic chain is strongly
related to the number of extended modes. The number of free
modes depends on the scaling of the localization length at the
bottom of the band. The authors in [15] demonstrated that in
a harmonic chain with an uncorrelated disorder distribution,
the standard divergence λ ∝ 1/ω2 promotes a super-diffusive
behavior, M2 ∝ t1.5. Furthermore, they also demonstrated
that for a short-range dimer-like disorder distribution, the
divergence of λ with ω becomes much faster and thus
promotes a quasi-ballistic spread. Here, we have obtained
the opposite trend. In figure 5(c) we plot the localization
length versus ω at the bottom of the band. Calculations were
made for N = 108 masses, γ = 5 and 0.01 and b = 0.25,
0.5, 0.75 and 1. For γ = 5 we recover an uncorrelated
random harmonic chain with λ ∝ ω−2. This result is in good
agreement with the super-diffusive behavior of the second
moment, M2 ∝ t1.5, found in figures 5(a) and (b). We can
see clearly from figure 5(c) that for γ = 0.01 we obtained

a slower divergence for the localization length around ω = 0.
In fact, is not easy to estimate exactly the scaling behavior of
λ with ω in the strongly correlated case; however, it is clearly
slower than 1/ω2. This result corroborates the sub-diffusive
dynamics obtained in figures 5(a) and (b) for γ → 0. In
summary, in our calculations we have obtained numerical
evidence contrasting with the super-diffusive spread that was
reported in [15, 18–21]. We stress that by using analytical
arguments it was demonstrated that a super-diffusive spread
is obtained in harmonic chains and it is strongly dependent
on the initial condition and the number of extended modes
in the allowed frequencies band [15]. Furthermore, it was
numerically demonstrated that the second moment of the
energy distribution displays a super-diffusive dynamics even
in two-dimensional nonperiodic harmonic lattices [20, 21].
In fact, the super-diffusive dynamics for an initial impulse
excitation seems to be a universal feature of low-dimensional
disordered harmonic lattices (it is found in both 1D and
2D). Therefore, in our calculations we have obtained new
numerical evidence contrasting with these previous results.
The key mechanism in our case is the number of eigenstates
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around the low-frequency region, which is smaller than the
number obtained in [18–21], thus corroborating the slower
dynamics obtained in our model.

4. Summary

We have studied a one-dimensional ternary harmonic
chain with the mass distribution constructed from an
Ornstein–Uhlenbeck process. The ternary mass disordered
distribution was generated from a mapping of the correlated
Ornstein–Uhlenbeck process into a sequence of three different
values. The probability of each value is controlled by
a fixed parameter b. The degree of correlation in the
Ornstein–Uhlenbeck process is controlled by the γ parameter.
For large γ we recover an uncorrelated random sequence
and for γ → 0 the sequence displays long-range correlations.
We have analyzed the localization properties of the above
model by using basically two formalisms: numerical solution
of the Hamilton equations and the transfer matrix formalism.
We have obtained results that contradict previous results for
models with ternary correlated sequences. Our results indicate
that the correlated ternary mass distribution considered here
does not promote the appearance of new extended modes.
We have obtained an apparent Anderson transition for b > 4;
however, by using calculations of the local disorder of the
mass disorder distribution, we have numerically demonstrated
that this model in fact displays a disorder–order transition for
b > 4. In fact, the amount of disorder is vanishing at this
limit. We would like to stress that a correct interpretation
of the nature of the eigenstates at b = 4 for this type of
model with ternary disorder was completely absent in the
literature. We also calculated the scaling behavior of the
localization length with the degree of correlation γ . By
using a Fourier analysis we explained in detail the scaling
behavior found (λ ∝ γ−0.5). In addition, we obtained the
energy dynamics for this classical chain. Our results indicate
that this kind of correlation promotes slower energy transport.
We discussed this result based on the localization properties
of the eigenstates at the bottom of the band. We anticipate that
this work will stimulate further theoretical and experimental
investigations along these lines.
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