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Abstract
In this paper we report new numerical results on the disordered Schrödinger equation with
nonlinear hopping. By using a classical harmonic Hamiltonian and the Su–Schrieffer–Heeger
approximation we write an effective Schrödinger equation. This model with off-diagonal
nonlinearity allows us to study the interaction of one electron and acoustical phonons. We
solve the effective Schrödinger equation with nonlinear hopping for an initially localized
wavepacket by using a predictor–corrector Adams–Bashforth–Moulton method. Our results
indicate that the nonlinear off-diagonal term can promote a long-time subdiffusive regime
similar to that observed in models with diagonal nonlinearity.

The strongly established relationship between the extension of
the wavefunction and the electrical nature of the system makes
the study of the electronic character of the wavefunction a
recurrent issue in condensed matter physics. Many factors
play a role in the degree of localization of the wavefunction:
however, since the seminal paper by Abrahams et al it
is known that the presence of disorder is a central factor
governing the extension of the wavefunction [1]. The authors
showed that all states in a disordered system with a dimension
less than two are localized in a fraction of the system,
irrespective of the strength of the disorder. However, it
has also been demonstrated that, in the presence of certain
ingredients, delocalized states can appear. For example,
delocalized states are observed when specific correlations are
imposed on the statistic of the disorder [2, 3]. Delocalized
zero-energy states are also found in quasi-one-dimensional
systems with a random magnetic field [4]. The magnetic
field also plays an interesting role in the localization
properties in fractal space. It was demonstrated in a Sierpinski
gasket that an incommensurate magnetic field can couple
original highly degenerated localized states and make them
delocalized [5, 6]. It is worth mentioning that, although the
Anderson localization has been developed in the electronic
context, such a prediction is still valid for every field
described by a wave equation. For instance, Anderson
localization of electromagnetic fields [7], water waves [8] and
Bose–Einstein condensates (BEC) [9] have been reported in
the literature. One interesting issue concerning the latter is
that its dynamics is well described by the Gross–Pitaevskii

equation [10] and the nonlinearity present in this equation
reveals exciting new physical properties [11–13]. In the
electronic context, nonlinearity in the Schrödinger equation
can also be present. It was shown that the electron–phonon
interaction is well described by a nonlinear Schrödinger
equation [13, 14]. One of the most interesting phenomena
induced by nonlinearity is self-trapping which occurs when
the strength of the nonlinearity exceeds a critical value
of the order of the bandwidth [13–15]. In this regime,
an initially localized wavepacket does not spread over the
system, remaining localized in a fraction of the system. The
interplay between nonlinearity and disorder has been recently
investigated and the nonlinear aspects seem to be dominant
over the disorder [16–19]. In particular, there was observed
a counter-intuitive subdiffusive spreading of an initially
localized wavepacket, without any indication of saturation
for long time runs [16]. From the experimental point of
view, the competition between disorder and nonlinearity
was investigated in coupled waveguides patterned on an
AlGaAs substrate. The authors report that the presence
of nonlinearity enhances the localization of linear modes.
However, on the other hand, it induces the delocalization
of nonlinear modes [20]. It must be stressed here that the
study of the nonlinear Schrödinger equation is important
in many branches of physics. For instance, the propagation
of electromagnetic waves in nonlinear disordered media
has been investigated [21, 22]. The influence of the
anharmonic terms of the phonon–phonon interaction, which
leads to nonlinearity, was also explored [23]. Usually,

10953-8984/12/245401+05$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/24/245401
mailto:fidelis@fis.ufal.br
http://stacks.iop.org/JPhysCM/24/245401


J. Phys.: Condens. Matter 24 (2012) 245401 F A B F de Moura et al

the electron–phonon interaction included in the nonlinear
Schrödinger equation commonly found in the literature
describes the coupling between the lattice vibration and
the diagonal electronic matrix elements of the electron
Hamiltonian, namely diagonal linearity. In fact, it was shown
that the lattice vibration can also couple with the off-diagonal
electronic matrix elements [24].

Pan et al investigated the electronic time evolution
in a disordered off-diagonal nonlinear medium [26]. The
authors observe the second momentum of the electronic
probability and the participation number for different
nonlinearity strengths. They claim that the presence of
off-diagonal nonlinearity destroys the delocalization found
if only diagonal nonlinearity was present. In this work, we
revisit this problem and numerically show that the presence of
off-diagonal nonlinearity does not inhibit the delocalization in
a disordered linear chain. We calculate the second momentum
of probability and no saturation was found for times up to
107. We also show that not all states display the subdiffusive
spreading regime. Only the components with energy close
to the center of the band spread. On the other hand, states
with energy at the band edge remain localized. This energy
dependence was studied in the diagonal nonlinearity context
by Mulansky et al [27]. The authors have demonstrated
rigorously, in terms of the Gibbs distribution, that states with
energy at the band edge cannot spread because there is no
delocalized states which conserve the norm and the energy
at the band edge. On the other hand, the norm and energy
conservation do not prevent the appearance of delocalized
states at the center of the band. We numerically show that this
statement is still valid for off-diagonal nonlinearity.

1. Model and formalism

We consider an electron moving in a one-dimensional
(1d) chain taking account of the coupling with atomic
displacement (acoustical phonons). We write the Hamiltonian
within the Su–Schrieffer–Heeger (SSH) approximation [24].
This model was originally developed in order to understand
the electrical properties of linear polymers. Some assumptions
are considered in this model. Firstly, interchain electron
hybridization is neglected. The electron is treated in the
adiabatic approximation since the gap between the bounding
and antibounding states is large for polymers. This model
also considers the small vibration regime, allowing us
to expand the bounding energy to second order about
the equilibrium atom positions. Furthermore, in the small
vibration regime, the hopping terms can be treated in a
first-order expansion about the equilibrium system [25].
Under those considerations, the Hamiltonian can be written
as [24, 26, 29]

H =
∑

n
{(u̇n)

2/2+ (K/2)(un − un−1)
2
} +

∑
n
εnc†

ncn

+

∑
n
{[V0 + τ(un − un−1)](c

†
n+1cn + c†

n−1cn)} (1)

where un is the atomic displacement, V0 is the intrinsic
hopping integral, εn is the on-site energy of the nth site, τ

is the electron–phonon coupling constant, and c†
n and cn are

the creation and annihilation operators for the electron at site
n. Performing a variational calculation within an adiabatic
approximation, it can be found that the displacement of
each atom is proportional to the local electron density. By
considering the wavefunction in the Wannier representation
|8(t)〉 =

∑
nφn(t)|n〉, the effective Schrödinger equation with

a nonlinear hopping term is given by

ih̄
dφn

dt
= εnφn + [V + χ(|φn|

2
+ |φn+1|

2)]φn+1

+ [V + χ(|φn|
2
+ |φn−1|

2)]φn−1 (2)

where χ is the parameter describing the effective electron–
phonon coupling. We solve the set of nonlinear cou-
pled differential equations using a predictor–corrector
Adams–Bashforth–Moulton formalism initialized by the
Dormand–Prince Runge–Kutta method of order eight with
time step 1t = 0.01. Our calculations for long times were
done by using the tenth-order Adams–Bashforth formalism
as the predictor formula and the ninth-order Adams–Moulton
procedure as the corrector. The time step used here is
sufficient to keep the wavefunction normalization for a
long time (|1 −

∑
n|φn(t)|2| < 10−10). In order to have an

additional confirmation of our results, we have also used
the standard Dormand–Prince Runge–Kutta method with
1t = 0.01 for entire integrations (not shown here). We
have found exactly the same results to within the numerical
tolerance. However, as is well known in the literature, the
computational time required in the Runge–Kutta formalism
is longer than the time required by the predictor–corrector
algorithm. Aiming to characterize the dynamic behavior of
an initially localized wavepacket, i.e. {φn(t = 0) = δn,0},
we computed typical quantities that can give information
on its spatial extension, namely the participation function
and wavepacket mean-square displacement which are defined
as [15, 29]

ξ(t) = 1
/∑

n
|φn(t)|

4 (3)

and

σ(t) =
√∑

n
[(n− 〈n(t)〉)2]|φn(t)|2, (4)

〈n(t)〉 =
∑

nn|φn(t)|2. In the long-time regime, the scaling
behavior of the last quantity can also be used to distinguish
between localized and delocalized wavepackets. Note that
σ(t) varies from 0, for a wavefunction confined to a single
site, to a function which is proportional to the number of sites,
for a wave uniformly extended over the whole system. In this
work, we perform calculations with tmax ≈ 107.

2. Results and discussion

The main results were obtained following the time evolution
of a wavepacket initially localized at the center of a
self-expanding chain. The self-expanding chain was used
to minimize the border effects; whenever the probability
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Figure 1. Mean-square displacement σ(t) versus time for several
values of the off-diagonal electron–phonon coupling constant χ .
Our numerical results indicate that off-diagonal nonlinearity induce
the subdiffusive spreading of wavepacket σ ∝ t0.20(2).

of finding the particle at the ends of the chain exceeded
10−30, ten new sites were added to each end. The numerical
convergence and method stability are checked at each
time step. We verify that the norm conservation, e.g.
|1 −

∑
n|φn(t)|2| < 10−10 is always satisfied during the

simulation time. In order to prevent the effects of a specific
disorder configuration, we take the average over 20 disorder
configurations. Figure 1 shows the mean-square displacement
σ(t) for several values of the off-diagonal electron–phonon
coupling constant χ . The width of the diagonal disorder used
was W = 5. In the absence of nonlinearity (χ = 0), the
well-defined Anderson localization regime takes place and
the wavepacket does not show any spreading [30]. However,
when the nonlinear hopping is switched on, we observe a
subdiffusive regime, σ ∝ t0.20(2). Moreover, in figure 2 we
plot calculations of the participation number ξ versus time for
the same chains used in figure 1. This figure ratifies figure 1
since the subdiffusive regime obeys the same power law ξ ∝

t0.20(2). It should be stressed that the values of the exponent
obtained here are of the same order of magnitude reported
in [16] where only diagonal nonlinearity was considered.
However, this result is in contrast to the calculation of [26],
where a localized regime was numerically found. We believe
that the discrepancy between our results and [26] is due to the
short time analysis performed by the authors.

It is worth analyzing an anomaly present in this model.
For χ = −1, the dynamics of an initially delta localized
wavepacket shows a huge localization behavior. In fact, it
is a consequence of the initial wavepacket used. When an
initial wavepacket such as {φn(t = 0) = δn,0} is considered,
for χ = −1, the effective hopping terms between the initial
site 0 and the nearest-neighbor sites are zero (t0,1(t = 0) =
t−1,0(t = 0) = 0) and therefore self-trapping takes place. In
order to overcome this anomalous behavior presented by this
model, we perform the time evolution of an initial Gaussian

Figure 2. Plot of the participation number ξ versus time. The
results were obtained following the time evolution of a wavepacket
initially fully localized at the center of a self-expanding nonlinear
chain. The width of diagonal disorder used here was W = 5. In
good agreement with mean-square displacement calculation, we
obtained again a subdiffusive regime ξ ∝ t0.20(2).

wavepacket defined by

φn(t = 0) = A(6) exp[−(n− n0)
2/462

]. (5)

Here 6 is the variance of the initial wavepacket and
A(6) is the normalization constant. In figures 3(a)–(b) we
plot the mean-square displacement, σ , and the participation
number, ξ , versus time for χ = −1 and 6 = 1. We observe
a subdiffusive spreading regime similar to those found in
figures 1 and 2. The solid line in figure 3(b) represents the
participation number of an initially fully localized wavepacket
(6 = 0) in this chain with χ = −1. In figure 4 we compute
respectively the mean-square displacement (left panel) and
participation number (right panel) for χ <−1 and W = 5. The
numerical results report that the wavepacket dynamic presents
the same subdiffusive regime that was observed for χ > 0. We
also analyze the influence of the degree of disorder, W, on the
dynamic properties of the wavepacket. In figure 5 we plot the
mean-square displacement and the participation number for
nonlinear chains with off-diagonal nonlinearity χ = 3 varying
the width of diagonal disorder (W = 6–9). One can observe
that the subdiffusive regime is robust concerning the disorder
magnitude. In fact, this behavior is similar to that found in [16]
where only diagonal nonlinearity was considered.

Before concluding this paper, we call attention to the
fact that not all states are delocalized. A fraction of the
states remain localized even with the presence of nonlinearity.
As discussed in [27], the presence of nonlinearity promotes
the emergence of thermalized states, which present the
subdiffusive spreading behavior. The authors show that only
states with energy close to the center of the band can be
thermalized and states at the band edge remain localized.
In order to verify if this property is held for off-diagonal
nonlinearity, we perform the time evolution of states with
energy at the center of the band and one state with energy
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Figure 3. For chains with off-diagonal nonlinearity χ = −1 we
study the time evolution of an initially Gaussian wavepacket with
variance 6. We compute the mean-square displacement σ (a) and
the participation number ξ (b) versus time for χ = −1 and 6 = 1.
We observe a subdiffusive regime similar to that found in figures 1
and 2. For 6 = 0 (solid line in figure 3(b)) the hopping of the initial
site with its nearest-neighbor sites is zero (t0,1(t = 0) = t−1,0(t = 0)
= 0). therefore we obtain ξ = 1 which represents a localized
behavior.

at the band edge. The initial states are selected by exact
diagonalization of the Hamiltonian of a chain with 100 sites,
in the absence of nonlinearity and taking the states with
the selected energy. In figure 6 we show σ(t) (upper panel)
and ξ(t) (lower panel) for states with energy equal to 0.002

Figure 5. (a) The mean-square displacement and (b) the
participation number for a nonlinear chain with off-diagonal
nonlinearity χ = 3 and distinct widths of diagonal disorder
(W = 6–9). The subdiffusive regime remains stable.

(continuous line), 0.04 (dotted line) and 3.75 (dashed line).
One can see that states with energy close to the center of
the band display the subdiffusive spreading and the state with
energy close to the band edge remains localized.

3. Summary and conclusion

In this work we include the coupling between lattice vibration
and off-diagonal electronic matrix elements. Within the clas-

Figure 4. Left panel: the mean-square displacement versus time. The results were obtained following the time evolution of a wavepacket
initially fully localized at the center of a self-expanding nonlinear chain with χ = −2,−3,−4,−5 and W = 5. Right panel: calculations of
the participation number for the same cases of the left panel. The numerical results indicate the same subdiffusive regime that was observed
for χ > 0.
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Figure 6. Upper panel—the mean-square displacement, σ(t),
versus time for three different initial states and nonlinearity, ξ = 3.
The initial states are eigenstates of the linear Hamiltonian with
energies 0.002 (continuous line), 0.04 (dotted line) and 3.75 (dashed
line). The first two initial states are close to the center of the band
while the last one is at the border edge. Lower panel—the
participation ratio, ξ(t), versus time for the same initial states of the
upper panel. One can notice that the subdiffusive regime takes place
only for the initial states at the center of the band.

sical harmonic Hamiltonian and the Su–Schrieffer–Heeger
approximation, a disordered Schrödinger equation is written
with the presence of off-diagonal nonlinearity. We solve the
effective Schrödinger equation with nonlinear hopping for
an initially localized wavepacket using a predictor–corrector
tenth-order Adams–Bashforth–Moulton [28] method initial-
ized by the Dormand–Prince Runge–Kutta method of order
eight. Our main result indicates that the nonlinear off-diagonal
term can promote a long-time subdiffusive regime, similar
to those observed in the models with diagonal nonlinearity,
however, contrary to the behavior reported in [26]. We also
show that not all states display the subdiffusive regime. There
is a fraction of the states, with energy at the border edge,
that remains localized. The inclusion of the off-diagonal
nonlinearity is crucial in order to give a detailed description
of the electronic properties of disordered systems and can be
experimentally tested in BEC systems [31, 11] and disordered
photonic lattices [32].
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