
Extended acoustic modes in random systems with n-mer short range correlations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 J. Phys.: Condens. Matter 23 345404

(http://iopscience.iop.org/0953-8984/23/34/345404)

Download details:

IP Address: 200.17.113.204

The article was downloaded on 12/08/2011 at 17:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/23/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 23 (2011) 345404 (5pp) doi:10.1088/0953-8984/23/34/345404

Extended acoustic modes in random
systems with n-mer short range
correlations
D F Barros, A E B Costa and F A B F de Moura

Instituto de Fı́sica, Universidade Federal de Alagoas, Maceió—AL 57072-970, Brazil
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Abstract
In this paper we study the propagation of acoustic waves in a one-dimensional medium with a
short range correlated elasticity distribution. In order to generate local correlations we
consider a disordered binary distribution in which the effective elastic constants can take on
only two values, ηA and ηB. We add an additional constraint that the ηA values appear only in
finite segments of length n. This is a generalization of the well-known random-dimer model.
By using an analytical procedure we demonstrate that the system displays n− 1 resonances
with frequencies ωr. Furthermore, we apply a numerical transfer matrix formalism and a
second-order finite-difference method to study in detail the waves that propagate in the chain.
Our results indicate that all the modes with ω 6= ωr decay and the medium transmits only the
frequencies ωr.

1. Introduction

The localization theory proposed by Anderson has predicted
the absence of extended eigenstates in low-dimensional
systems with uncorrelated disorder [1]. Therefore, for
long times, the width of the time-dependent wavepacket
saturates in a finite region around the initial position. In
a three-dimensional lattice, the presence of weak disorder
promotes the localization of the high energy eigenmodes [1,
2]. The low energy states with long wavelength remain
extended, although acquiring a finite coherence length. A
mobility edge separates the high energy localized states from
the low energy extended states [1, 2]. Recently, it has been
shown that low-dimensional disordered systems can support
extended states or a localization–delocalization transition in
the presence of short or long range correlations in the disorder
distribution [3–15]. From the experimental point of view,
these theoretical predictions have been useful for explaining
transport properties of semiconductor superlattices [16] and
microwave transmission spectra of a single-mode waveguide
with intentional correlated disorder [17].

The formalism of the localization theory applies also to
the study of magnon localization in random ferromagnets [18,
19], collective vibrational motion of one-dimensional (1D)
disordered harmonic chains [20–22] and acoustic waves in

disordered media [23–35]. In fact, the propagation of acoustic
waves has attracted both theoretical [23–31, 33–35] and
experimental [32] interest. Along general lines, it was shown
that such waves may be localized in media with uncorrelated
disorder. However, recent works point out the drastic effect of
correlations within the acoustic wave context [27–31, 33–35].
In [27] the propagation of acoustic waves in the random-dimer
chain was studied using the transfer matrix method, exact
analytical analysis, and direct numerical simulation of the
scalar wave equation. The results indicated that there exists
a resonance frequency at which the localization length of
the acoustic wave diverges [27]. It was also shown that
only the resonance frequency can propagate through the
1D media. Moreover, the wave propagation in a random
system with a power-law correlation function was investigated
by using the renormalization group formalism as well as
numerical methods [28–31]. Calculations indicate that there
can be a disorder-induced transition from delocalized to
localized states of acoustic waves in any spatial dimension.
In [33] the propagation of acoustic waves in a 1D medium
with the random elasticity distribution assumed to have a
power spectrum S(k) ∼ 1/kα was studied. It was numerically
demonstrated that scale-free correlations promote a stable
phase of free acoustic waves in the thermodynamic limit for
α > 2 [33].
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In this paper, we report further progress along these
lines. Our main aim is to focus on the influence of short
range correlated disorder on the propagation of elastic waves.
In order to generate local correlations we will consider a
disordered binary distribution in which the effective elastic
constants can take on only two values, ηA and ηB. We add
an additional constraint that the ηA values appear only in
finite segments of length n. The n-mer correlated disorder is a
generalization of the well-known random-dimer disorder [22,
27]. By using analytical and numerical formalisms, we will
demonstrate that an elastic medium with n-mer correlations on
the random elasticity distribution can support n − 1 extended
acoustic modes.

2. The model and formalism

We start by considering the acoustic wave equation in a
random medium [27]:

∂2

∂t2
ψ(x, t) =

∂

∂x

[
η(x)

∂ψ(x, t)

∂x

]
. (1)

Here ψ(x, t) is the wave amplitude, t is the time, and η(x) =
e(x)/m is the ratio of the stiffness e(x) and the medium
mean density m. We consider the wave amplitude with a
time-dependent harmonic form ψ(x, t) = ψ(x) exp(−iωt),
where ω is the wave frequency. We will use a finite-difference
(FD) method to write the acoustic wave equation in a
discretized form. The spatial wave amplitude ψ(x) is written
as ψi, where x = i1x. The spatial derivative will be written
as (∂ψ(x))/(∂x) ≈ (ψi − ψi−1)/1x. Following [27] we will
use m = 1 and consider nearest-neighbor spacing 1x = 1.
Therefore, the right side of equation (1) can be written as

∂

∂x

[
η(x)

∂ψ(x)

∂x

]
≈ [ηi(ψi+1 − ψi)− ηi−1(ψi − ψi−1)].

(2)

Accordingly, the discrete 1D version of the wave equation
can be obtained as

ηi(ψi+1 − ψi)− ηi−1(ψi − ψi−1)+ ω
2ψi = 0. (3)

The elastic constants ηi will be generated following an
n-mer distribution [22]. We introduce a disordered binary
distribution in which the elastic constants ηi can take on
only two values, ηA and ηB, with probabilities p and 1 − p
respectively. We add an additional constraint that the ηA
values appear only in finite segments of length n. This is
a generalization of the random-dimer model, where n =
2 recovers the well-known random-dimer elastic system
form [22, 27].

3. Results

3.1. Analytical analysis

To study the nature of acoustic modes in n-mer correlated
elastic media we will follow the analytical formalism used
in [22, 27]. Equation (3) can be solved by using the transfer

matrix formalism (TMF) [20, 27]. The TMF is obtained from
a matrix recursive reformulation of equation (3). The matricial
equation is(
ψi+1

ψi

)
=

−ω2
+ ηi + ηi−1

ηi
−
ηi−1

ηi
1 0

( ψi

ψi−1

)

= Ti

(
ψi

ψi−1

)
. (4)

The wave amplitude of the complete 1D system is given
by the product of the transfer matrices QN =

∏N
i=1Ti. Within

the n-mer distribution of elastic constants ηA and ηB we will
have four different types of transfer matrix Ti, namely [27]
TAA, TAB, TBA and TBB, where

TAA =

−ω2
+ 2ηA

ηA
−1

1 0

 (5)

and

TAB =

−ω2
+ ηA + ηB

ηB
−
ηA

ηB
1 0

 , (6)

while the other two are obtained by carrying out the
transformations A→ B and B→ A. Following [27], the n-mer
short range correlated elastic medium displays extended
acoustic modes for Tn

AA = −pn−2(xr)I and TBATn−1
AA TAB =

pn−2(xr)TBB, where xr = (2ηA − ω
2
r )/ηA are the solutions

of the n − 1th-order polynomial equation pn−1(xr) = 0.
The characteristic polynomials can be obtained following
the recursive relations pn+1(x) = xpn(x) − pn−1(x) with
p1(x) = x and p0(x) = 1. Thus, for these frequencies ωr the
transfer matrix QN of the complete chain contains only the
matrices TBB, which effectively describe an ordered chain.
For example, following the formalism above we obtain the
frequency ωr =

√
2ηA for n = 2; ω1

r =
√
ηA and ω2

r =
√

3ηA for n = 3; ω1
r =

√
(2−
√

2)ηA, ω2
r =
√

2ηA and

ω3
r =

√
(2+
√

2)ηA for n = 4; ω1
r =

√
(2−

√
3+
√

5
2 )ηA,

ω2
r =

√
(2−

√
3−
√

5
2 )ηA, ω3

r =

√
(2+

√
3−
√

5
2 )ηA and ω4

r =√
(2+

√
3+
√

5
2 )ηA for n = 5. Therefore, disordered elastic

media with n-mer-like short range correlations display n − 1
extended states in the thermodynamic limit.

3.2. Numerical analysis

The logarithm of the smallest eigenvalues of the limiting
matrix 0 = limN→∞(Q

†
NQN)

1/2N defines the Lyapunov
exponent γ (the inverse of localization length λ = 1/γ ).
Further details about the computation of this parameter can
be found in [2, 27]. For extended states, λ/N ≈ const and
it goes to zero for localized waves. Typically, we use up
to N = 107 transfer matrices to compute the localization
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Figure 1. Numerical calculations of the localization length versus
acoustic mode frequency ω. Calculations were done for a very long
1D (N ≈ 107 sites) n-mer correlated elastic medium with ηA = 8,
ηB = 10, n = 2–5. We demonstrated, in perfect agreement with
analytical calculations, the existence of n− 1 resonances.

length. It should be stressed that in this method, self-averaging
effects automatically take care of statistical fluctuations. The
resulting data set has statistical errors of less than 5%. We
estimate and control these statistical fluctuations following
the deviations of the calculated eigenvalues of two adjacent
iterations [2, 27]. All numerical calculations were done for
p = 0.5; however, we did not find any dependence on p
within the open interval (0, 1). In figure 1 we plot λ × ω for
an n-mer 1D correlated elastic medium with ηA = 8, ηB =

10, n = 2–5. Our results indicate, in good agreement with
analytical calculations, the presence of n−1 resonances in the
high frequency region. The frequencies ωr of these resonances
agree remarkably well with the frequencies obtained through
the analytic formalism. In figure 2 we plot a finite size scaling
of the localization length at frequencies ωr. We perform
calculations of ln λ(ω = ωr) × ln N considering the same
parameters as for figure 1. Dotted lines represent the extended
behavior λ ∝ N. Our results indicate that the localization
length diverges linearly with system size for all frequencies,
thus confirming numerically the extended nature predicted
earlier. Around the critical frequencies the localization length
diverges as the frequency approaches the critical frequency as
λ ∝ |ω−ωr|

−ν . Using the logarithmic plot of λ× (ω−ωr) we
estimated the exponent ν. Calculations are shown in figure 3.
For the resonant modes considered here (n = 2–5), λ diverges
as λ ∝ |ω − ωr|

−2.00(5). We stress that this divergence is
exactly the same as that found in [27] and seems to be a
signature of dimer-like local correlations [3, 4]. In addition,
we apply the FD method with second-order discretization for

Figure 2. ln λ(ω = ωr)× ln N for an n-mer 1D correlated elastic
medium with ηA = 8, ηB = 10, n = 2–5. Dotted lines represent the
extended behavior λ ∝ N. Our calculations reveal, in good
agreement with analytical treatment, the extended nature of
resonance in the n-mer 1D correlated elastic media.

both time and spatial variables proposed in [27]. Thus, in
discretized form, ψ(x, t) is written as ψ j

i , where j denotes
the time step number and i is the grid point number [27].
Therefore, the second time derivative in equation (1) is given
by [27]

∂2

∂t2
ψ(x, t) ≈

ψ
j+1
i − 2ψ j

i + ψ
j−1
i

1t2
, (7)

where 1t is the size of the time step. The spatial derivative
will be written as

∂

∂x

[
η(x)

∂ψ(x, t)

∂x

]
≈

1

1x2 [ηi(ψ
j
i+1 − ψ

j
i )

− ηi−1(ψ
j
i − ψ

j
i−1)]. (8)

In our calculations the spacing 1x between two neighboring
grid points was set to 1x = 1. In order to ensure the stability
of the discretized equations we will use 1t < 1x/20. We
carry out our dynamical analysis by sending a wave from one
side of the chain (L = 0) and recording the transmitted wave
close to the other side (position L = 20 000). We calculate
the intensity spectrum of the transmitted wave at position L
defined as

A(ω) = (1/2)|ψL(ω)|
2 (9)

where ψL(ω) is the Fourier transform of the transmitted wave
ψL(t) at position L = 20 000. For transmitted acoustic modes,
A(ω) > 0 and goes to zero for filtered ones. In our dynamical
calculations the chain length was N = 30 000. In figure 4 we
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Figure 3. Logarithmic plot of λ× (ω − ωr). Calculations were
done for the same parameters as were used in figures 1 and 2. We
found that for the resonant modes considered here (n = 2–5), λ
diverges as λ ∝ |ω − ωr|

−2.00(5).

present the resulting frequency dependence of the intensity
spectrum A(ω) for our dynamical numerical analysis. We
use the incident pulse 90(t) = exp[−(t − t0)2/2σ 2

t ] cos(ωt)
with σt = (1/σω) = 1/20 [27]. Calculations were done for
an n-mer 1D correlated elastic medium with ηA = 8, ηB =

10, n = 2–5. We averaged the intensity spectrum using 30
realizations of the disorder. In good agreement with the
analytical and numerical formalism shown previously, all the
modes with ω 6= ωr decay and the medium transmits only the
frequency ωr.

4. Summary and conclusions

In this paper we have considered the propagation of acoustic
waves in a 1D elastic medium with short range correlated
disorder. The elasticity distribution was considered as an
n-mer dimer distribution of effective spring constants ηA and
ηB. Here the ηA value appears only in finite segments of
length n. We applied both analytical and numerical procedures
to study the nature of acoustic modes that propagate along
the medium. We carried out an exact analysis of the
effective transfer matrix in order to predict the existence of
extended acoustic modes and the dependence of the resonance
frequencies ωr on the value of the paired elastic constant
and the degree of short range correction. Our results indicate
that the n-mer model supports n − 1 extended states with
λ(ωr) ∝ N. Analytical results were corroborated by numerical
estimation of the localization length λ. Furthermore, we
numerically demonstrated that around the critical frequencies

Figure 4. Intensity spectrum of the transmitted wave pulse through
the n-mer 1D correlated elastic medium with ηA = 8, ηB = 10,
n = 2–5. Corroborating analytical and numerical results shown
previously, all the modes with ω 6= ωr decay and the medium
transmits only the frequency ωr.

the localization length diverges as λ ∝ |ω − ωr|
−2.00(5). Our

calculations indicated that the quadratic divergence found
here seems to be a universal feature associated with local
n-mer correlations [27]. In addition, by solving the scalar
wave equation for propagation of a incident pulse with a
wide spectral density, we showed that the chain localizes
all the frequency content of the wave pulse, except for the
resonance frequencies. Within the context of recent works
on acoustic waves in low-dimensional media with correlated
disorder [28–31], our results extend some previous statements
concerning the existence of resonant modes in 1D elastic
media with dimer-like correlated disorder. We demonstrated
the existence of a multiple-resonance structure in an elastic
medium with n-mer correlated elasticity distribution and
showed that these resonances have specificities similar to
those found in 1D elastic media with dimer-like correlated
disorder. We expect that the present work will stimulate
further theoretical and experimental investigations along these
lines.
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