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Abstract
We numerically study the propagation of acoustic waves in a one-dimensional medium with a
scale-free long-range correlated elasticity distribution. The random elasticity distribution is
assumed to have a power spectrum S(k) ∼ 1/kα . By using a transfer-matrix method we solve
the discrete version of the scalar wave equation and compute the localization length. In
addition, we apply a second-order finite-difference method for both the time and spatial
variables and study the nature of the waves that propagate in the chain. Our numerical data
indicate the presence of extended acoustic waves for a high degree of correlations. In contrast
with local correlations, we numerically demonstrate that scale-free correlations promote a
stable phase of free acoustic waves in the thermodynamic limit.

1. Introduction

The absence of extended eigenstates in low-dimensional
systems with uncorrelated disorder was pointed out by
Anderson using perturbation theory and scaling analysis [1, 2].
Therefore, after a long time the width of the time-dependent
wavepacket saturates in a finite region around the initial
position. In a three-dimensional lattice, the presence of
weak disorder promotes the localization of the high-energy
eigenmodes [1, 2]. The low-energy states with long wavelength
remain extended, although acquiring a finite coherence length.
A mobility edge separates the high energy localized from
the low energy extended states [1, 2]. Recently, it has been
shown that low-dimensional disordered systems can support
extended states or a localization–delocalization transition in
the presence of short- or long-range correlations in the
disorder distribution [3–15]. The delocalization problem
in one-dimensional (1D) systems with scale-free correlated
diagonal disorder has attracted much attention. It has
been reported [5, 9, 10, 13] that these systems display
an Anderson metal–insulator transition (MIT) with mobility
edges separating localized and extended states for sufficiently
strong correlations. In particular, the 1D system with
nearest-neighbor interactions and a long-range correlated
on-site disorder distribution with a power-like spectrum
behaving as k−α has been studied in detail in [5, 10, 13].
From the experimental point of view, these theoretical
predictions were useful to explain the transport properties of
semiconductor superlattices [16] and microwave transmission
spectra of a single-mode waveguide with intentional correlated

disorder [17]. Moreover, it was suggested that an appropriate
algorithm for generating random correlated sequences with
desired mobility edges could be used in the manufacture of
filters for electronic or optical signals [9].

The localization of collective excitation in random
low-dimensional lattices is a quite general feature. It
applies, for example, to the study of magnon localization
in random ferromagnets [6], collective vibrational motion of
1D disordered harmonic chains [7, 18], and acoustic waves
in disordered media [19–28]. In fact, the propagation of
acoustic waves has attracted both theoretical [19–27] and
experimental [28] interest. In general terms, it was shown
that such waves may be localized in media with uncorrelated
disorder. However, recent works point out the drastic effect
of correlations within the acoustic waves context [23–27].
In [23] the propagation of acoustic waves in the random-
dimer chain was studied using the transfer-matrix method,
exact analytical analysis, and direct numerical simulation of
the scalar wave equation. The results indicated that there
exists a resonance frequency at which the localization length
of the acoustic wave diverges [23]. It was also shown that
only the resonance frequency can propagate through the 1D
medium. Moreover, the wave propagation in a random system
with a power-law correlation function was investigated by
using renormalization group formalism as well as numerical
methods [24–27]. Calculations indicate that there can be a
disorder-induced transition from delocalized to localized states
of acoustic waves in any spatial dimension.

In this work, we contribute to a further understanding of
acoustic wave propagation in low-dimensional systems with
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correlated disorder distribution. We follow [23] considering
a discrete 1D version of the wave equation where the elasticity
distribution appears as an effective spring constant. The scale-
free long-range correlated elastic constant distribution was
generated by using a discrete Fourier method. First, using the
transfer-matrix method, we calculate the localization length
of acoustic waves propagating in the medium, and show that
long-range correlation induces a localization–delocalization
transition. In addition, by using direct numerical simulation
of the equation that governs the propagation of acoustic waves,
we demonstrated the drastic effect of free scale correlations
within the disorder distribution. We find that the correlated
random medium can filter out all high frequencies of the
wavepacket.

2. Model and formalism

We start by considering the acoustic wave equation in a random
medium (see [23]):

∂2

∂ t2
ψ(x, t) = ∂

∂x

[
η(x)

∂ψ(x, t)

∂x

]
. (1)

Here, ψ(x, t) is the wave amplitude, t is the time, and
η(x) = e(x)/m is the ratio of the stiffness e(x) and the
medium’s mean density m. Following [23] we will use m =
1 and consider a discrete 1D version of the wave equation
(�x = 1)

ηi (ψi+1 − ψi )− ηi−1(ψi − ψi−1)+ ω2ψi = 0. (2)

The elastic constants ηi will be considered as a long-range
correlated random sequence. In order to generate sequences
with a power-law decaying spectral density function, we firstly
generate the following auxiliary sequence [5, 29]:

xi = tanh

[ N/2∑
k=1

1

kα/2
cos

(
2π ik

N
+ φk

)]
(3)

which is restricted to the interval −1 � xi � 1 and whose
spectral density function decays asymptotically as 1/kα . The
hyperbolic transformation of the series brings the advantage of
bounding the interval of the random variable without changing
its asymptotic correlation function. Such a power-law decaying
correlation function actually characterizes the absence of a
typical correlation length in the disorder distribution and allows
the investigation of the influence of scale-free disorder on the
properties of the acoustic waves. In the above equation, k
is the wavevector of the modulations on the random variable
landscape, φk are N/2 random phases uniformly distributed in
the interval [0, 2π] and the exponent α controls the degree of
correlation. The sequence of elastic constants is obtained after
normalizing the auxiliary sequence to have unitary variance
(�η = 1) and displacing it to avoid negative constants ηi .
In the following, we use ηi = 2 + xi/�x . With the above
procedure, the distribution of ηi has sharp edges for any value
of α, which results in long-range correlated sequences of
strictly positive elastic constants even when very large chains
are considered. For α = 0, we recover an uncorrelated random
sequence of elastic constants.

2.1. Localization properties

Equation (2) can be solved by using the transfer-matrix
formalism (TMF) [7, 23]. The TMF is obtained from a matrix
recursive reformulation of equation (2). The matricial equation
is
(
ψi+1

ψi

)
=

( −ω2+ηi +ηi−1

ηi
− ηi−1

ηi

1 0

)(
ψi

ψi−1

)
= Ti

(
ψi

ψi−1

)
.

(4)
The wave amplitude of the complete 1D system is given by
the product of the transfer matrices QN = ∏N

i=1 Ti . The
logarithm of the smallest eigenvalues of the limiting matrix

 = limN→∞(Q†

N QN )
1/2N define the Lyapunov exponent

γ (inverse of localization length λ = 1/γ ). Further
details about the computation of this parameter can be found
in [2, 23]. Typically, by using a fast Fourier formalism to
sum equation (3), we use up to N = 222 transfer matrices
to compute the localization length. For extended states
λ/N ≈ const and goes to zero for localized waves. A
quantitative scaling analysis of the localization number can be
derived by using the scaled average localization length 〈λ〉/N
defined as

〈λ〉/N = 1

N N f

ω=1.5∑
ω=0.5

λ(ω) (5)

where N f is the number of acoustic modes within the interval
[0.5, 1.5]. To compute the scaled average localization length,
the bottom of the band was avoided because the localization
lengths of these low-frequency modes are large even in the
absence of correlated disorder [23]. We are interested in the
existence of extended states apart from the bottom of the band.
Accordingly, 〈λ〉/N does not depend on N for extended modes
and goes to zero for localized ones.

2.2. Dynamics of acoustic waves

In addition, we apply the finite-difference method with
second-order discretization for both time and spatial variables
proposed in [23]. Thus, in discretized form, ψ(x, t) is written
as ψn

i , where n denotes the time step number and i is the grid
point number [23]. Therefore, the second time derivative in
equation (1) is given by [23]

∂2

∂ t2
ψ(x, t) ≈ ψn+1

i − 2ψn
i + ψn−1

i

�t2
(6)

where �t is the size of the time step. The spatial derivative
will be written as

∂

∂x

[
η(x)

∂ψ(x, t)

∂x

]
≈ 1

�x2

× [ηi(ψ
n
i+1 − ψn

i )− ηi−1(ψ
n
i − ψn

i−1)]. (7)

In our calculations the spacing �x between two neighboring
grid points was set at �x = 1. In order to ensure the stability
of the discretized equations we will use �t < �x/100. We
carry out our dynamical analysis by sending a wave from one
side of the chain (L = 0) and recording the transmitted wave
close to the other side (position L = 20 000). We calculate
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Figure 1. Scaled localization length λ/N versus ω for α = 0, 1, and
3. Calculations were made considering N = 214 and 217 points.
These results indicate that, for strong correlations, there are extended
acoustic waves at the low-frequency region.

the intensity spectrum of the transmitted wave at position L
defined as

A(ω) = (1/2)|ψL(ω)|2 (8)

where ψL (ω) is the Fourier transform of the transmitted wave
ψL(t) at position L = 20 000. For transmitted acoustic modes,
A(ω) > 0 and goes to zero for filtered ones. In our dynamical
calculations the chain length was N = 215.

3. Results and discussion

Initially, we show the results about the localization properties
obtained using the transfer-matrix technique. The finally
obtained data have statistical errors less than 5%. We
estimate and control these statistical fluctuations following
the deviations of the calculated eigenvalues of two adjacent
iterations [2, 23]. In figure 1 we show the scaled localization
length λ/N versus ω computed for α = 0, 1, 3, and distinct
system sizes (N = 214 and 217). All calculations were
averaged over 105 disorder configurations. For α = 0 and
1 the localization length scales proportionally to the system
size only for ω = 0. Therefore, for ω > 0 there are no
truly delocalized states at this regime of weakly correlated
disorder. However, for α = 3 a well defined data collapse
in a wide region of low frequencies is obtained with λ ∝ N .
This result suggests the possibility of a phase of low-frequency
extended states for strongly correlated disorder. In figure 2(a)
we collect data of the scaled average localization length 〈λ〉/N
versus the degree of correlations α for N = 214, 217 and
219. Let us stress that to compute the average localization
length the bottom of the band was avoided due to the weak
localization character of these low-frequency acoustic modes

Figure 2. (a) Scaled average localization length 〈λ〉/N versus the
degree of correlations α. For α > 2 there is a well defined data
collapse, thus indicating a localized–delocalized transition. (b) Finite
size scaling of the scaled average localization length 〈λ〉/N . Within
our numerical precision 〈λ〉 ∝ N0.98(2) for α > 2 thus indicating
extended states.

even in the absence of correlated disorder [23]. As can be
seen in figure 2(a), there is a well defined data collapse in the
strongly correlated regime (α > 2), i.e. the localization length
diverges in the regime of low frequencies (ω < ωc ≈ 1.6(1)).
In figure 2(b) we plot the scaled average localization length
〈λ〉/N versus N for N = 214 up to 222 and α = 0.5, 1.5, 2.5
and 3. Within our numerical precision 〈λ〉 ∝ N0.98(2) for
α > 2. For α < 2 the vanishing of the scaled average
localization length 〈λ〉/N for large N confirms the localized
nature of the eigenstates in this regime. Therefore, the finite
size scaling of the scaled average localization length 〈λ〉/N
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Figure 3. (a), (b) The amplitude of the wave during propagation through the scale-free correlated disordered medium for time t = 500 000�t .
We consider in (a) the uncorrelated case (α = 0) and (b) the strongly correlated limit (α = 3). The incident wave is a sine wave with
frequencies ω = 1 (below ωc). (c), (d) The amplitude of the wave for times t1 = 50 000�t , t2 = 100 000�t , t3 = 200 000�t and
t4 = 300 000�t , considering the incident wave as a pulse defined by 0(t) = exp [−(t − t0)

2/2σ 2
t ] cos (ωt) with σt = (1/σω) = 20 and

frequency ω = 1 (below ωc). Regardless of the initial condition, the case α = 3 allows the propagation along the 1D system. (e) The intensity
spectrum A(ω) of the transmitted wave pulse at position L = 20 000 computed using 20 realizations of the disorder. The incident wave was
considered as a pulse defined by 0(t) = exp [−(t − t0)

2/2σ 2
t ] cos (ωt) with σt = (1/σω) = 20 and frequencies chosen within the interval

{0, 3]. For sufficient degree of correlations, A(ω < ωc) > 0, indicating that those acoustics waves with divergent localization lengths display
a free propagation through the scale-free correlated disordered medium.

indicates the existence of a localized–delocalized transition
for α > 2. To conclude we will look at the evidence of
the above phase transition by solving directly the scalar wave
equation. By following the time propagation of an incident
wave we obtain directly the degree of transmittance of a scale-
free correlated disordered medium. Moreover, the divergence
of the localization length itself does not guarantee the existence
of extended states, as in the case of a vibrational wave envelope
displaying a power-law decay [2]. In figures 3(a) and (b)
we plot the wave amplitude ψi versus grid index i at time
t = 5000 000�t . The incident wave is a sine wave with
frequency ω0 < ωc. We consider in (a) the uncorrelated case
(α = 0) and (b) the strong correlated limit (α = 3). We observe
that for α = 3 the incident wave displays a free propagation
through the scale-free correlated disordered medium. By

following [24, 25] we also consider the incident wave as a
pulse defined by 0(t) = exp [−(t − t0)2/2σ 2

t ] cos (ωt) with
σt = (1/σω) = 20. In figures 3(c) and (d) we plot the wave
amplitude ψi versus grid index i at times t1 = 50 000�t ,
t2 = 100 000�t , t3 = 200 000�t , t4 = 300 000�t with
σt = (1/σω) = 20, frequency ω = 1 (below ωc), and
α = 0 and 3 (respectively figures 3(c) and (d)). Once again,
we observe that for α = 3 the incident wave displays a
free propagation through the scale-free correlated disordered
medium. To complete our dynamical analysis, we solve
numerically the wave equation for several pulses with distinct
frequencies within the interval {0, 3] and compute the intensity
spectrum A(ω) using 20 realizations of the disorder. In
figure 3(e) we present the resulting frequency dependence
of the intensity spectrum A(ω) for these simulations. As
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Figure 4. (a), (b) Scaled localization lengths, averaged over a
frequency window [0.5, 1.5], versus α for �η = 0.5 and 0.75.
Similarly to the 1D Anderson model with long-range correlated
diagonal disorder [13], the critical point (αc) obtained here seems to
be independent of the magnitude of disorder�η.

shown in figure 3(e), all the modes with ω > ωc decay, and
the medium behaves as a filter to transmit only the modes
below frequency ωc ≈ 1.6. We compute the intensity
spectrum A(ω) by using another kind of incident wave (e.g.
0(t) = ∑

ωn<3 cos (ωnt)) and no qualitative change in the
physical properties is found. These results confirm those
obtained by the numerical analysis based on the TMF method
described before. Then the numerical evidence reported
here, obtained by using TMF and numerical solutions of
wave equations, suggests that the low-frequency modes in
a 1D medium with scale-free correlated disorder are in fact
delocalized. The localization–delocalization transition found
here is similar to the electronic Anderson transition induced
by long-range correlations found previously in 1D random
electronic systems [5]. Before finishing, we explore the
possibility of the disorder strength to influence the critical
value αc = 2. In figures 4(a) and (b) we show the
scaled average localization length 〈λ〉/N versus the degree of
correlation α for N = 217, 219, and 221 and distinct disorder
strengths �η = 0.5 and 0.75. We observe that the critical
point (αc = 2) is independent of the magnitude of disorder
�η. This trend was also obtained in 1D electronic models with
long-range correlated diagonal disorder [13].

4. Summary and conclusions

We studied the propagation of acoustic waves in a one-
dimensional medium with scale-free long-range correlated
disorder. The random distribution was assumed to have
a power spectrum S(k) ∼ 1/kα . By using a transfer-
matrix method we computed the localization length of the
allowed acoustic waves. Our results have shown that for

α > 2 the localization length in the low-frequency region
(ω < ωc) scales proportionally to the system size, thus
suggesting that these acoustic modes are extended. In addition,
by using a dynamical method, based on directly solving
the scalar wave equation for the propagation of an acoustic
wavepacket, we showed that the chain indeed localizes all
the frequencies except those in the frequency range below
ωc. Both formalisms provide an accurate estimate of the
mobility edge ωc. In contrast with 1D random media with
local correlations, we numerically demonstrated that scale-free
correlations promote a localization–delocalization transition
in the thermodynamic limit. Within the context of recent
studies on acoustic waves in low-dimensional media with
correlated disorder [24–27], our numerical results extend some
previous statements concerning the existence of an acoustic
wave delocalization induced by correlated disorder. Here we
showed that a true mobility edge can emerge in systems with
strong long-range correlated disorder delimiting a finite range
of transmitted frequencies. By following the recent literature
on the self-affine long-range correlated disorder distribution,
it seems that it plays a universal role in wave propagation
phenomena [5, 11, 12, 14]. The critical point (αc = 2)
is the same as that obtained in 1D models with long-range
correlated on-site energies [5], hopping terms [14], and two-
dimensional one-electron Hamiltonians with correlated on-site
potentials [11, 12]. We expect that the present work will
stimulate further theoretical and experimental investigations
along these lines.
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