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Abstract
We study the nature of collective excitations in classical harmonic lattices with aperiodic and
pseudo-random mass distributions. Using a matrix recursive reformulation of the mass
displacement equation, we compute the localization length within the band of allowed
frequencies. Our numerical calculations indicate that, for aperiodic arrays of masses, a new
phase of extended states appears in this model. Solving numerically the Hamilton equations for
momentum and displacement along the chain, we compute the spreading of an initially
localized energy excitation. We find that for sufficient aperiodicity, there is a ballistic
propagation of the energy pulse.

1. Introduction

The transport properties in nonperiodic lattices are a very
important issue which has attracted scientific interest for
several decades. The problem of electronic transport in
disordered lattices was investigated by Anderson [1–3]. In
one-dimensional (1D) and two-dimensional (2D) electronic
systems, the scaling theory [2] predicts the absence of
a disorder-driven metal–insulator transition (MIT) for any
degree of uncorrelated disorder. In a three-dimensional lattice,
the presence of weak disorder promotes the localization of
the high-energy eigenmodes. The low-energy states with
long wavelength remain extended, although acquiring a finite
coherence length. A mobility edge separates the high
energy localized from the low-energy extended states. The
localization of collective excitation in random low-dimensional
lattices is a quite general feature. It applies, for example, to
the study of magnon localization in random ferromagnets [4]
and collective vibrational motion of 1D disordered harmonic
chains [5]. Within the disordered harmonic chain context, it
was shown there are about

√
N low-frequency non-localized

modes, where N is the number of masses in the chain [5, 6].
Besides these low-frequency extended modes, short or long-
range correlations in the disorder distribution (spring constants
or masses) lead to a new set of non-scattered modes [7–11].

Among models with disordered geometry or composition,
Hamiltonian models with aperiodicity have attracted renewed
interest. For example, the well known aperiodic Anderson
model [12] lies between the random Anderson model and
the periodic Bloch model. It was shown that the localized
or extended nature of their eigenstates is related to general

characteristics of the aperiodic on-site distributions [12–16].
The effect of aperiodicity on the electronic dynamics in 2D
lattices was studied in [17]. The one-electron Schrödinger
equation in a 2D square lattice with an aperiodic site potential
was solved numerically. It was numerically demonstrated
that a phase of extended states emerges in the center of
the band giving support to a macroscopic conductivity in
the thermodynamic limit [17]. The role played by a
specific aperiodic structure on the localization properties
and/or energy transport in harmonic chains was studied
in [18, 19]. Moreover, the quantum Heisenberg ferromagnet
with aperiodic exchange couplings was considered in [20]. The
aperiodic distribution of exchange couplings was generated
as a sinusoidal function whose phase φ varies as a power-
law. By using exact diagonalization, it was shown that this
ferromagnetic system displays a phase of extended spin waves
in the low-energy region [20]. The great importance of
aperiodicity in different domains of science was showed by
Macia in [21].

In this work, we study 2D harmonic lattices with masses
following a distribution similar to that used in [12] that
simulate both aperiodic and pseudo-random mass distributions.
We focus on the Lyapunov exponent, estimated using a transfer
matrix method. These results are used to characterize the
nature of vibrational modes in this model. We show that, due
to the aperiodicity of the mass array, low-frequency extended
vibrational modes can exist. The dynamics of an initially
localized excitation is also studied by computing the energy
distribution. We find that, associated with the emergence of a
phase of delocalized modes, a ballistic regime takes place.
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2. Model and formalism

We consider a 2D harmonic lattice of N ×M masses, for which
the classical Hamiltonian can be written as H = ∑

n,m hn,m(t),
where the energy hn,m(t) of the mass at site (n, m) is given by

hn,m(t) = P2
n,m

2mn,m
+ 1

4
[(Qn+1,m −Qn,m)2 + (Qn,m −Qn−1,m)2

+ (Qn,m+1 − Qn,m)2 + (Qn,m − Qn,m−1)
2]. (1)

Here Pn,m and Qn,m define the momentum and displacement
of the mass at site (n, m). The 2D aperiodic mass distribution
will be take to be aperiodic in the form:

mn,m = m0 + W ∗ cos (αnνx ) cos (αmνy ), (2)

where m0, W < m0, α, νx and νy are variable
parameters. Calculations will done by using all elastic
couplings equal to unity, m0 = 4 and α = 0.5. By
considering displacements along the N-direction (longitudinal
displacements) and inserting a solution of the form Qn,m =
un,m exp(iωt) we obtain the following equation of motion

(4−ω2mn,m)un,m = un−1,m +un+1,m +un,m+1 +un,m−1. (3)

After defining un,m = cn,m/
√

mn,m we get
(

4

mn,m
− ω2

)

cn,m = cn−1,m√
mn,mmn−1,m

+ cn+1,m√
mn,mmn+1,m

+ cn,m+1√
mn,mmn,m+1

+ cn,m−1√
mn,mmn,m−1

. (4)

2.1. Localization properties

A very standard quantity used to reveal the degree of
localization is the Lyapunov exponent γ (which is the inverse
of the localization length λ). The better numerical method
for accurately computing localization lengths in nonperiodic
systems is the transfer matrix method (TMM). The TMM
is obtained by using a matrix recursive reformulation of the
scaled displacement equation (equation (4)) in a 2D strip of
width M (N × M with N � M). The matricial equation is
( �Ci+1

�Ci

)

=
( 1

ti,i+1
(Hi + Ji − ω2I) − ti−1,i

ti,i+1

I 0

) ( �Ci
�Ci−1

)

= Ti .

( �Ci
�Ci−1

)

(5)

where Ci+1 = (ci+1,1, . . . , ci+1,M )T represents the scaled
displacements along the i th slice, Hi is a square M × M
diagonal matrix with [Hi ]k,k = 4/mi,k , Ji is a square M ×
M Hermitian matrix with null elements except [Ji ]k,k+1 =
1/

√
mi,kmi,k+1 and ti,i+1 denotes a diagonal matrix with

[ti,i+1]k,k = 1/
√

mi,kmi+1,k . The scaled displacements of the
complete 2D strip are given by the product of the transfer
matrices QN = ∏N

i=1 Ti . The logarithm of the smallest
eigenvalues of the limiting matrix � = limN→∞(Q†

N QN )1/2N

define the Lyapunov exponent γ . Further details about the
computation of this parameter can be found in [22].

Figure 1. Lyapunov exponent γ as a function of frequency ω2 for
νx = νy = 2, W = 1.8, M = 40 and 80. The Lyapunov exponent
vanishes close to the low-frequency region (ω → 0) as expected for
low-dimensional harmonic systems. In the high-frequency region,
γ > 0 corroborating previous results that indicate localization in
nonperiodic square lattices.

2.2. Energy transport

The fraction of the total energy H0 at site (n, m) is given
by fn,m(t) = hn,m(t)/H0 where hn,m(t) is defined by
equation (1). By considering a uniform energy packet spread
on a pure N × N harmonic square lattice (mn,m = constant),
we have fn,m ≈ 1/N2. Therefore, we can define the following
time dependent quantity

ξ(t) = 1
∑N

n,m=1 f 2
n,m

. (6)

For a uniform energy packet we have
∑N

n,m=1 f 2
n,m =

(1/N4)
∑N

n,m=1(1) = (1/N2). Therefore, ξ ∝ N2 for a
uniform energy packet spread on a square harmonic lattice with
N × N masses. In a periodic square harmonic lattice (mn,m =
constant), the second moment of the energy distribution
defined as [9, 19]

M2 =
√∑

n,m

[(n − n0)2 + (m − m0)2] fn,m, (7)

displays a ballistic dynamics [M2(t) ∝ t]. Therefore we
conclude that ξ(t) ∝ t2 for the energy transport in a
periodic harmonic square lattice [9, 19]. The function ξ

measures the number of masses that participate in the energy
transport. This function is similar to the participation number
for electrons [11]. In our calculations an initial excitation
is introduced at site (n0, m0). We solved the Hamilton
equations for Qn,m and Pn,m by using a Dormand–Prince
eighth-order Runge–Kutta method with monitoring of local
truncation error [23] and then computing ξ(t).

3. Results and discussion

In order to calculate the typical localization length of the
eigenmodes, we use the transfer matrix technique for a long
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a) b)

c) d)

Figure 2. (a) Lyapunov exponent γ as a function of squared frequency ω2 for νx = νy = 0.5, W = 1.8, M = 40 and 80. (b) The same as (a)
for νx = 0.5, νy = 2.0, M = 40 and 80. (c) Lyapunov exponent γ computed at frequency ω2 ≈ 1.5 versus ν = νx = νy for W = 1.8,
M = 40 and 80. (d) Lyapunov exponent γ computed at frequency ω2 ≈ 1.5 versus W for νx = νy = 0.5. Calculations indicate that, for
W < 2, γ vanishes in the frequency region (ω2 < ω2

c ≈ 2.0(1)) when at least one of the degrees of exponents characterizing aperiodicity is
smaller than unity (νx < 1 or νy < 1).

strip of size N × M with N being extremely large (N ≈
3×106). In this method, the self-averaging effect automatically
takes care of statistical fluctuations. We estimate and control
these fluctuations following the deviations of the calculated
eigenvalues of two adjacent iterations. The finally obtained
data have statistical errors less 5%. In figure 1 we show data
for the Lyapunov exponent γ versus frequency ω2 for aperiodic
harmonic lattices with νx = νy = 2, M = 40 and 80. In low-
dimensional nonperiodic lattices the zero-frequency mode is a
uniform mode with γ = 0. For high-frequencies, the absence
of periodicity induces the localization of eigenmodes and a
nonzero Lyapunov exponent should be obtained [6, 9, 19, 11].
Our results agree reasonably with this main picture. The
Lyapunov exponent vanishes close to the low-frequency region
(ω → 0) and it is nonzero in the high-frequency region. For
both νx and νy larger than 1.0, the aperiodic mass distribution
promotes non-scattered (extended) modes only for frequencies
very close to zero. Within the 1D aperiodic harmonic chain
context, the ν > 1 limit showed the same physical properties as
a 1D random harmonic chain [19] and was called the pseudo-
random limit. In 2D our calculations indicate that the aperiodic

mass distribution in the regime νx > 1 and νy > 1 displays a
similar pseudo-random character. In figures 2(a) and (b) we
show the Lyapunov exponent γ as a function of frequency
ω2 for (a) W = 1.8, νx = νy = 0.5, M = 40 and 80
and (b) W = 1.8, νx = 0.5, νy = 2.0, M = 40 and 80.
Both calculations indicate that γ vanishes in the low-frequency
region (ω2 < ω2

c ≈ 2.0(1)). In figure 2(c) we collect data of
the Lyapunov exponent γ computed at frequency ω2 ≈ 1.5
versus ν = νx = νy for W = 1.8, M = 40 and 80. Therefore,
our results suggest that when at least one of the exponents
characterizing degree of aperiodicity is smaller than 1 (νx < 1
or νy < 1), extended vibrational modes appear in the high-
frequency region. In figure 2(d) we report the dependence of
the Lyapunov exponent with width W . We plot the Lyapunov
exponent γ computed at frequency ω2 ≈ 1.5 versus W for
νx = νy = 0.5. For W > 2 there are no extended vibrational
eigenmodes. For all studied system sizes, we obtain γ ∝ 1/N
(not shown here) which indicates the true extended vibrational
modes in the thermodynamics limit (N → ∞). This behavior
does not guarantee the existence of extended states, as in
the case of a vibrational wave envelope displaying a power-
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Figure 3. (a) The timescaled function ξ(t)/t2 and (b) the scaled second moment M2(t)/t as a function of time for a square N × N aperiodic
harmonic lattice with W = 1.8, νx = νy = 0.5 (solid line), νx = 0.5 and νy = 2.5 (dashed line) and νx = νy = 2.5 (dotted line). For both νx

and νy smaller than unity, a ballistic energy spread with M2(t) ∝ t and ξ ∝ t2 was obtained. However, when at least one of the degrees of
aperiodicity exceeds unity a slower energy transport takes place.

law decay [6, 22]. Therefore we further study the dynamics
of an initially localized excitation in the lattice to better
characterize the energy spread in this system. To do this, we
solve the Hamilton equations for Qn,m and Pn,m by using an
initial energy impulse excitation (Pn,m = δn=N/2,m=N/2 P0 and
Qn,m = 0). In figure 3 we plot the timescaled function ξ(t)/t2

and scaled second moment M2(t)/t as a function of time for
a square N × N aperiodic harmonic lattice with νx = νy =
0.5 (solid line), νx = 0.5 and νy = 2.5 (dashed line) and
νx = νy = 2.5 (dotted line). Calculations were done by
using N × N = 2500×2500 and an eighth-order Runge–Kutta
method with time step �t = 0.005. The energy conservation
was checked to ensure numerical precision. For both νx and
νy smaller than unity a ballistic energy spread with M2(t) ∝ t
and ξ ∝ t2 was obtained. However, when at least one of the
degrees of aperiodicity exceeds unity a slower energy transport
takes place. We have performed calculations for an initial
displacement excitation and the results are similar, a ballistic
energy transport when both νx and νy are smaller than unity.
Let us stress that the Lyapunov exponent calculation predicted
extended states if at least one of the degrees of aperiodicity
is smaller than unity (νx < 1 or νy < 1). By following
the time evolution of an initially localized energy pulse we
add valuable information about the localization–delocalization
transition found here. In fact, the dynamical analyses indicate
that extended states only appear when both νx and νy are
smaller than unity. Therefore, to promote free energy transport
we need to impose sufficient aperiodicity on both directions of
the square lattice.

4. Summary and conclusions

In this paper we have studied the nature of collective
excitations in 2D harmonic lattices with aperiodic and
pseudo-random mass distributions. To produce an aperiodic
distribution of masses, sinusoidal functions were used the
phases of which vary as a power-law, φx ∝ nνx and φy ∝ mνy ,

where n, m labels the positions along the square lattice. Using
a transfer matrix formalism we compute the localization length
of eigenmodes within the band of allowed frequencies. We
observed that, for both νx < 1 and νx < 1, the localization
length diverges with N in the low-frequency region. Therefore
there is a new phase of extended vibrational modes in these
aperiodic harmonic square lattices. In addition, we showed
that the presence of these non-scattered vibrational modes can
modify the spreading of an initially localized energy pulse.
By calculating the energy spatial distribution, we found the
existence of a ballistic propagation of the energy pulse. For
at least one of the degrees of aperiodicity (νx or νy) larger
than unity the pseudo-random character of masses induces
a similar behavior to that found in 2D harmonic lattices
with uncorrelated random mass distributions [9, 19, 11].
The thermal conductivity can be strongly influenced by the
presence of new extended modes at low-frequencies [24]. We
expect that the present work will stimulate further studies along
this direction.
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