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A B S T R A C T

We study the dynamics of one-magnon states coupled to the underlying harmonic oscillations of a linear lattice.
We consider that small amplitude oscillations affect linearly the exchange couplings. Within an adiabatic ap-
proximation, the magnon dynamics is governed by an effective modified nonlinear Schrödinger equation. We
provide a detailed numerical study of the magnon self-trapping transition. We accurately determine the critical
nonlinearity c above which a finite fraction of an initially localized spin excitation remains trapped. To this end,
we analyze relevant quantities such as the return probability, participation number and Shannon entropy. We
also follow the soliton dynamics showing that its velocity vanishes as v ( )c

1/2. The return probability is
shown to be discontinuous at c while the participation number displays a kink singularity.

1. Introduction

The dynamics of spin waves in complex magnetic systems under
influence of interactions with magnetic fields or lattice vibrations has
been a key condensed matter topic within the last decades [1–3]. Ac-
cording to the recent literature, the presence of elasticity as well as
interaction between magnons and phonons were shown to be relevant
within the context of distinct magnetic compounds [4–10]. Several
works have shown experimentally that the presence of vibrational
modes affects substantially the dynamics of spin excitations [4–7]. The
presence of spin-phonon coupling, as well as its effects on the magnetic
properties, was also reported to take place in some semiconductors
[8,9]. In Ref. [10], the authors investigated films of the ferrimagnetic
insulator Yttrium-Iron garnet under a non-uniform magnetic field. They
demonstrated the conversion of coherent magnons generated by a mi-
crowave field into phonons that carries a net spin.

In which concerns the theoretical description of several magnetic
systems, the Heisenberg Hamiltonian [11,12] has a successful trajectory
[13–19]. In general, the exchange spin-spin coupling that is considered
within the Heisenberg formalism can depend on the spin’s positions as
well as on their relative displacement. The role played by the magnon-
phonon coupling has been explored in several systems [20–22]. The
Heisenberg Hamiltonian was used, for example, to describe the con-
version between magnons and phonons [23]. Moreover, it was also
used to explain experimental data related to the phonon dynamics in
magnetic systems [24] and the effect of spin-phonon coupling on the

colossal magneto-resistance of magnetic compounds [25].
In this work, we will study the dynamics of spin-waves in an ani-

sotropic one-dimensional ferromagnetic system of spins =S 1/2. We
will take in account the influence of vibrational modes on the spin-
waves propagation, i.e., the coupling between one-magnon and
acoustic phonon excitations. Within an adiabatic approximation, and
considering that lattice vibrations can be treated according to the
classical mechanics formalism, the magnon dynamics is governed by a
modified discrete nonlinear Schrödinger equation (MDNLSE). In this
sense, it depicts some similarities with the polaron phenomenon for
electronic systems [26–32]. We will solve numerically the dynamic
equation and follow the time evolution of an initially localized spin
deviation. Some relevant quantities such as the return probability,
participation number and Shannon entropy will be used to characterize
the dynamic regimes. In particular, we will show that a finite fraction of
the magnon-excitation remains trapped around its initial location above
a critical nonlinear strength c. For weaker nonlinearities, the magnon-
excitation develops soliton-like fronts that propagate with a constant
velocity v. The soliton velocity will be shown to vanish as a power-law
when from below. The singular behavior of the return probability and
participation number will be also unveiled.

2. Magnon-Phonon Hamiltonian and the effective MNLDSE

We will consider a Heisenberg Hamiltonian in the anisotropic form
XXZ (Hmag) to describe the spin–spin interactions along a linear lattice.
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Classical harmonic oscillations will be considered to account for the
lattice dynamics described by a Hamiltonian Hlatt . The complete effec-
tive Hamiltonian is given by = +H H Hmag latt. In Fig. 1 we show a
schematic representation of the present model system. Each spin is
coupled with its nearest neighbors by harmonic springs. un represents
the position of spin n. The classical Hamiltonian describing the lattice
dynamics is given by:
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M and represent the ion’s mass and the spring constant respec-
tively. We will consider that the k TB where = M k/ , B is the
Boltzmann constant and T is the temperature. In this regime, the lattice
dynamics can be treated within the classical mechanics formalism. We
will consider the action of an external magnetic field H to promote a
saturated ferromagnetic ground state. The magnetic field will be as-
sumed to be large enough so that thermal fluctuations mainly produce
states with single spin flips. In what follows, we will be interested in
investigating how the dynamics of these one-magnon states are affected
by the underlying lattice oscillations. In the sub-space of single spin-flip
excitations, the Heisenberg Hamiltonian can be written as:
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where =S 1/2 and Jn m
Z XY
,

( ) represent the exchange couplings between
spins n and m along the Z direction and XY plane. The ground-state
energy is given by = ±E S J gµ NHSm m m

Z
B0

2
, 1 . cn

† and cn are the
spin-flip creation and annihilation operators at site n. Whenever the
creation operator is applied to the ground-state, it leads to the excited
state with the spin at site n flipped. In the present model, we will
consider that the exchange coupling depends on the distance between
nearest neighbor spins. We assume that, in the regime of small ampli-
tude oscillations, this dependence is given by:
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where is the effective spin-lattice coupling affecting the longitudinal
spin-spin interactions. In what follows, an adiabatic approximation will
be employed in order to solve the classical lattice motion equations.
Within this approach, the time scale associated with the magnon dy-
namics is considered to be smaller than the time scale associated with
the lattice vibrations.

Although this regime is usually not reached in ferromagnetic in-
sulators, the recent advent of advanced materials exhibiting high-fre-
quency terahertz magnons has impelled the development of a new class
of ultrafast spintronic devices. Terahertz magnons have been reported,
for example, in the 2D Ising honeycomb ferromagnet CrI3 [33],

ultrathin film of ironpalladium alloys [34], layered iron-cobalt mag-
nonic crystals [35] and noncollinear magnetic bilayers [36]. In this
class of systems presenting high-frequency ferromagnetic magnons, the
adiabatic integration over the phonon degrees of freedom can fairly
incorporate the main influence of the underlying magnon-phonon
coupling on the spin-wave dynamics.

Therefore we can consider u 0n and ü 0n . It results in a direct
relation between the lattice deformations and the magnon wave-func-
tion. Using this formalism, one can write an effective nonlinear
Schrödinger equation for the magnon dynamics as:

=
+ +
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from which a linear diagonal term has been omitted because it does not
have any impact on the magnon dynamics. =a a a| |n n n

2 represents the
probability of finding a spin deviation at site n. Moreover, the quantity

= J/2 2
0 is a nonlinear parameter that measures the strength of the

magnon-lattice coupling. In general lines, this equation represents a
modified discrete nonlinear Schrödinger equation (MDNLSE) associated
with the magnon dynamics.

Nonlinear contributions to the magnon dynamics also arise from
magnon-magnon interactions and shown to induce the formation of
magnetic solitons [37]. Recently, the competition between the non-
linear contribution resulting from a local anisotropy and disorder as-
sociated to a random magnetic field was investigated [38]. It has been
demonstrated that large nonlinearities lead to the self-trapping of
magnetic excitations which is anticipated by a sub-diffusive phase.
Although self-trapping was shown to take place when the nonlinearity
strength is much larger than the spectrum bandwidth, no precise bound
between the sub-diffusion and the self-trapping phases was established.
It is important to stress that while a local anisotropy leads to a non-
linear correction that depends only of the local magnon probability
density [38], the present nonlinearity resulting from the magnon-
phonon coupling also brings contributions from the magnon density at
the neighboring sites. A generalization of the nonlinear term to account
for a variable relative contribution of local ad neighboring densities
would simultaneously incorporates effects from both magnon-magnon
and magnon-phonon interactions.

We will solve numerically Eq. (4) to follow the time-evolution of
spin excitations. For the initial condition, we will use a single spin flip
at the chain center ( =n 0 will be taken as the center of chain). We will
consider =t J1/( )m 0 as the relevant time unit. To analyze the main
features of the spin-wave dynamics, we will compute the return prob-
ability defined as:

=R a| |0 0
2 (5)

and the participation number defined as:

=
a

a

| |

| |
n

n

n
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R0 and are two relevant quantities that can probe both the loca-
lization and self-trapping phenomena. If >R 00 after a long-time run, a
fraction of the initial spin excitations remains trapped around its initial
location. is an estimation of the number of sites over which the wave-
packet is predominantly distributed. remaining finite in the long-time
regime signals the formation of stable localized wave-packets.

We will also compute the Shannon entropy associated to the evol-
ving wave-packet defined as

=S a a| | ln| | ,
n

n n
2 2

(7)

Fig. 1. Schematic representation of a spin linear lattice with effective harmonic
springs coupling nearest-neighbor spins. The exchange interaction along the
field direction is considered to be affected by the relative displacement of the
pair of nearest-neighbor spins.
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which can give additional information regarding the wave-packet dy-
namics.

3. Results

We solved the set of discrete nonlinear Schrödinger equations using
a standard Runge-Kutta algorithm. The numerical integration was
performed considering a self-expanding algorithm of the chain size in
order to avoid finite-size and border effects. The position =n 0 was
taken as the chain center. All calculations were done by considering the
initial condition = =a t( 0)n n,0.

In Fig. 2 we plot the wave-function profile (a t| ( )|n
2) versus time t

and spin position n for some representative values of the nonlinear
parameter . In the linear case ( = 0) the initially localized spin ex-
citation radiates over the chain evolving to a fully delocalized state. For
large nonlinearities, a finite fraction of the spin excitation remains
trapped around its initial location. For weak nonlinearities, breathing
propagating soliton-like modes are developed, while a fraction of the
magnon wave radiates. The velocity of the propagating solitons de-
creases as the nonlinearity is increased. In Fig. 3 we illustrate the
transition between these two regimes. For = 1.82, as shown in Fig. 3a,
the moving breathing soliton has a very small velocity. Slightly above
this point (see. eg. Fig. 3b), it remains trapped.

To precisely locate the self-trapping transition point, we will explore
the behavior of the soliton velocity as a function of the nonlinear
strength. At first, we followed the time-evolution of the position of the

wave-function maxima for several values of , as shown in Fig. 4a. Both
maxima at the left and right branches are reported. They have the same
velocity as expected due to the parity symmetry of the Hamiltonian and
of the initial wave-function. This figure shows that the soliton velocity
continuously decreases, vanishing above some characteristic non-
linearity. This feature is more clearly reported in Fig. 4b where the
estimated values of the soliton velocity are plotted as a function of .
We also performed a scaling analysis of the soliton velocity to provide
an accurate estimate of the critical nonlinearity. In the vicinity of the
critical point, the velocity shall decrease as a power-law v ( )c .
The best power-law fit is achieved for = 1.825c providing the decay
exponent = 1/2 (see Fig. 4c). This value is of the same order of
magnitude of the critical nonlinearity for the transition from sub-dif-
fusion to self-trapping of magnetic excitations that takes place in the
presence of a random magnetic field acting together with a local ani-
sotropy [38]. In such system, nonlinearity effectively accounts for the
magnon-magnon interaction promoted by the local anisotropy. The
present result gives further support to the general picture that self-
trapping occurs when the nonlinearity strength sufficiently exceeds the
spectrum bandwidth.

The return probability can also be used to signal the self-trapping
transition. In Fig. 5 we report the return probability after a long time
run as a function of . It is vanishing small below the critical point and
becomes finite above c. However, in contrast to the continuous van-
ishing of the soliton velocity, the return probability is discontinuous at
the transition, with a jump R ( ) 0.16c0 . The emergence of a

Fig. 2. Time evolution of the wave-function profile (a t| ( )|n
2) on a chain with sites indexed by n for (a) = 0.0, (b) = 0.80, (c) = 1.60, (d) = 2.40. While in

absence of nonlinearity the wave function spreads over the lattice (see fig.a), the emergence of a soliton-like propagating structure characterizes the intermediate
regime (see fig.b-c). Self-trapping is observed for strong nonlinearities (see fig.d).
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discontinuous jump in the return probability is a direct consequence of
the soliton trapping phenomenon. In the inset of Fig. 5, we plot the
wave-function probability at the peak position of one of the travelling
solitons slightly below c. At the transition, both left and right solitons
are trapped in the initial position, giving rise to a return probability
which is twice as larger as the peak probability of each individual
merging soliton.

The self-trapping transition leads to a distinct singularity in the
wave-function spacial extension. In Fig. 6 the participation number
dependence on the nonlinearity parameter is shown. It displays an
overall 1/ 3 decay, thus confirming the expected trend of strong loca-
lization promoted by nonlinearity. At the self-trapping critical point,
the participation number develops a kink singularity. The merging of
the two solitonic branches at c does not result in a discontinuity of the

participation number itself but in the rate it varies with .
The time-evolution of the Shannon entropy associated to the evol-

ving wave-packet also signals the distinct dynamical regimes. To il-
lustrate this aspect, we plot in Fig. 7a the time-dependence of the en-
tropy for distinct values of the nonlinearity strength. It clearly depicts
two scaling regimes. At short-times its logarithmic growth is fairly in-
dependent of for weak nonlinearities. This regime is associated with
the initial spreading of the wave-packet and is suppressed for strong
nonlinearities. After this transient regime, the entropy develops a
slower increase. This feature results from the formation of the solitonic
wave with a breathing pattern. In this regime, only the radiative
component of the wave-packet contributes to the entropy overall in-
crease. The slope of the ×S tln curve can be used as an estimate of the
wave-packet fraction carried by the radiating wave. It decreases ex-
ponentially with when the nonlinearity strength is enlarged, showing
also a jump singularity at c, as shown in Fig. 7b. This singularity is
directly related to the merging of the solitonic branches at the self-

Fig. 3. Time evolution of the wave-function profile (a t| ( )|n
2) on the lattice sites n for (a) = 1.82 and (b) = 1.84. Notice the transition between the regimes of slowly

propagating solitonic modes to self-trapping.

Fig. 4. Dynamics of soliton-like structures, with (a) the position of the solitonic
waves < >n t( ( ))max versus t for several values of , (b) the soliton velocity
versus and (c) the scaling analysis of the velocity of both travelling solitons.
The best fit to a power-law decay provides = 1.825c and v ( )c

1/2.

Fig. 5. Data of the long-time behavior of the return probability ( R t( )0 )
versus corroborates the transition for self-trapped waves at = 1.825c . The
inset describes the -dependence of both return probability R0 and the wave
function probability at the center of the traveling soliton-like structures a| |max

2.
The merging of the two travelling solitons at c leads to a discontinuous jump in
R0.

D. Morais, et al. Journal of Magnetism and Magnetic Materials 506 (2020) 166798

4



trapping transition.
Before finishing, we would like to stress that the localized fraction of

the wave-function, both above and below the self-trapping transition,
has indeed a solitonic profile. In Fig. 8 we plot the spatial profiles
of these localized structures for two representative values of the
nonlinearity. For = 0.5, we focus on one of the travelling soliton-like
structures while for = 2 we show a trapped mode localized
around the initial position ( =n 0). Both modes follow the well
known soliton-like spatial profile proposed in Refs. [28,29] i.e.,

= ±a t a t sech a t n vt| ( )| | | ( )· [ | | ( )( )]n n n
2 2 2 2

max max . The solid lines in Figs. 8
represent fittings using this profile, thus confirming the solitonic nature
of these localized modes.

4. Summary

In this work we investigated the influence of lattice oscillations in
the dynamics of initially localized one-magnon excitations in an ani-
sotropic Heisenberg ferromagnetic chain. The magnon-lattice coupling
was introduced by considering the longitudinal spin-spin exchange
coupling as a linear function of the relative displacement between
nearest-neighbor spins. Treating the lattice oscillations within a clas-
sical mechanics formalism and using an adiabatic approximation, the
spin-wave dynamics is effectively described by a modified discrete
nonlinear Schrödinger equation where the nonlinear parameter is
proportional to the underlying spin-lattice coupling.

We showed that the nonlinearity promotes the wave-packet locali-
zation with the participation number presenting an overall 1/ 3 decay.
For weak nonlinearities, the wave-packet depicts both radiating and
localized modes. The localized modes are left and right travelling
breathing solitons. The soliton velocity decreases with , vanishing at

= 1.825c . Above this point, the localized mode becomes self-trapped
around the position of the initial excitation. We showed that the soliton
velocity decays continuously as ( )c

1/2. On the other hand, the re-
turn probability and participation number develop jump and kink sin-
gularities, respectively. The Shannon entropy was also shown to signal
these distinct dynamical regimes. The present numerical results provide
accurate estimates of the critical point and respective singularities of
the relevant quantities associated with the presently reported non-
linear-induced self-trapping transition. It would be interesting to have
these results derived from an analytical framework. It would bring
valuable new insights to the overall wave dynamics in discrete non-
linear lattices.
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Fig. 6. Data of the long-time participation number ( t( ) versus . A kink
singularity is developed at c. The overall 1/ 3 decay signals the strong loca-
lization promoted by nonlinearity.

Fig. 7. (a) Time evolution of the Shannon entropy S for distinct values of the
nonlinearity strengths . The logarithmic growth captures the wave-packet
spreading. Notice that the slope changes at a characteristic time scale associated
to the soliton formation. (b) The asymptotic slope of the entropy curves (in
logarithmic time scale) as a function of the nonlinear strength. It gives an es-
timate of the radiative wave-packet fraction. The asymptotic slope changes
discontinuously at the self-trapping transition.

Fig. 8. The spatial profile of the wave-function around (a) travelling and (b)
trapped solitonic modes. The solid lines represent a fitting curve, which cor-
roborates a spatial profile = ±a t a t sech a t n vt| ( )| | | ( )· [ | | ( )( )]n nmax nmax

2 2 2 2 of
breathing bright solitons.
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