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A B S T R A C T

We investigate a one-dimensional spin−1∕2 quantum Heisenberg model with disordered exchange couplings
and magnetic fields. The first features a correlated disorder obeying a power law spectrum of the form
𝑆(𝑘) ∝ 𝑘−𝛽 . The magnetic fields are uniformly distributed random values. We numerically investigate the
competition between disorder and correlation in a protocol involving the state transfer of a magnon state
from one end of the chain to the other. The performance is measured via the transfer fidelity and end-to-end
concurrence between spins. We address the conditions for a state transfer protocol to occur with good fidelities
even in the presence of disorder.
1. Introduction

The dynamics of spin waves has attracted significant attention
over the past decade due to their promising applications in informa-
tion technology [1]. Spin waves are collective excitations of magnetic
moments in magnetic materials. Besides giving birth to rich physics
they offer an advantage over standard electronic transport in terms
of energy dissipation [2]. Recent experimental works explore the use
of magnons to control magnetic domain walls [3], form Bose–Einstein
condensates [4], carry out efficient transport [5], and so forth [1].

Given their properties, spin waves also meet applications in quan-
tum information processing [1,6]. Indeed, engineered spin chains have
been a standard to the design of quantum-state transfer protocols [7].
Short- to moderate-distance transmission have been shown to be feasi-
ble in spin chains with static parameters that run on the natural time
evolution of the system. As such, the topological profile of the system
is crucial for delivering the desired output [8]. Long-range interacting
spin chains have been investigated in [9,10]. In [10] the authors
reduced it to an effective, ideal two-spin system which is scalable
with the channel while keeping the interaction strength relatively high.
Other configurations include staggered spin−1∕2 chains [11,12] that
display rich topological properties. Many-qubit quantum state transfer
has also been explored [13].

There is a variety of configurations one can envisage to precise the
speed, fidelity, and robustness of a qubit transfer [7,8,11,13–20]. One
particular scheme relies on a minimum engineering of the channel by
adjusting only the outer couplings [16,21]. Zwick et al. reported that
the weak-coupling regime is quite robust against static disorder [19].

∗ Corresponding author.
E-mail address: fidelis@fis.ufal.br (F.A.B.F. de Moura).

In Ref. [22], the authors showed that an inhomogeneous external field
can extend the range of parameters that allows for high-fidelity state
transfer in that class of spin chains.

Here we explore a 1D quantum Heisenberg spin−1∕2 model fea-
turing disordered exchange couplings and nonuniform magnetic fields.
In particular, the spin–spin interaction assumes a correlated disorder
distribution with power law spectrum 𝑆(𝑘) ∝ 𝑘−𝛽 , with a tunable
exponent 𝛽 and 𝑘 being the modulation wave vector. It was showed that
correlated disorder can increase the quality of quantum state transfer
protocols compared to the uncorrelated case [23]. We thus set out to
investigate the interplay between disorder and correlations in a magnon
transfer protocol. The magnetic field within the channel takes indepen-
dent random values uniformly distributed in a given disorder width.
At both ends of the chain, the magnetic fields are tunable parameters.
These will be responsible for harnessing propagating magnon modes in
the spectrum. The quantum state transfer works by preparing a magnon
at one side of the chain, and letting it be reconstructed (as much as
possible) at the other side via the Hamiltonian time evolution. The
quality of the protocol can be measured by the transfer fidelity [7]
and end-to-end concurrence [24]. Our results indicate that the presence
of correlations in the disordered spin–spin coupling promotes good
transfer fidelities under weak magnetic fields.

2. Model and formalism

Let us consider a quantum Heisenberg model with 𝑁 spin−1∕2
particles that reside on a linear chain under the effect of a nonuniform
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magnetic field 𝐻⃗𝑛. The Hamiltonian reads [25,26]

= −
𝑁
∑

𝑛=1
{𝐽𝑛𝑆𝑛 ⋅ 𝑆𝑛+1 + 𝐻⃗𝑛 ⋅ 𝑆𝑛}, (1)

here 𝐽𝑛 are the exchange couplings connecting nearest-neighbor sites.
he magnon transfer protocol occurs between the first and last sites of
he chain (𝑛 = 1 and 𝑛 = 𝑁) acting as sender and receiver, respectively.
he exchange coupling between each of them and the channel (sites 2
hrough 𝑁 − 1) is set as 𝐽1 = 𝐽𝑁−1 = 𝑗0. Now, the exchange couplings
ithin the channel feature a kind of long-range correlated disorder [27]

𝑛 =
𝑁∕2
∑

𝑘=1
𝑘−𝛽∕2cos

(2𝜋𝑛𝑘
𝑁

+ 𝜙𝑘
)

, (2)

with 𝜙𝑘 being a random phase uniformly distributed in [0, 2𝜋]. The
series generated by the above formula is associated to the trace of a
fractional Brownian motion with power spectrum 𝑆(𝑘) ∝ 𝑘−𝛽 [25,27].

The exponent 𝛽 is a tunable parameter to control the degree of
correlations. When 𝛽 = 0, the couplings 𝐽𝑛 are uncorrelated obeying
a Gaussian distribution. For 𝛽 > 0, long-range correlations set in and
modifies the localization profile of the modes. Indeed, in an Ander-
son model featuring only diagonal disorder it has long been known
that when 𝛽 > 2, the series increments become persistent and it
culminates in a localization–delocalization transition of single-particle
eigenstates [27]. For the quantum Heisenberg model with disordered
long-range correlated couplings, de Moura et al. [25] reported a mobil-
ity edge at the vicinity of 𝛽 = 1 [28] separating extended and localized
modes.

After generating the series according Eq. (2) we normalize the
distribution and further 𝐽𝑛 → [0.5 tanh (𝐽𝑛) + 𝐽 ], where 𝐽 ≡ 1 sets our
nergy scale. The nonuniform magnetic field within the channel are
andom numbers uniformly distributed with a disorder width ℎ, that is
𝑛 ∈ [−ℎ∕2, ℎ∕2] for 𝑛 ≠ 1, 𝑁 . Here we restrict our analysis to case of
eak disorder ℎ < 𝐽 . The magnetic field acting on the outer spins is

ixed to 𝐻1 = 𝐻𝑁 = 𝐸𝑆𝑅.
Our computational basis is spanned by magnon states featuring a

ingle reversed spin at a given location 𝑛, |𝑛⟩ = 𝑆+
𝑛 |𝑔⟩, where |𝑔⟩ denotes

he ferromagnetic ground state. As such, an arbitrary superposition
t time 𝑡 reads |𝜙(𝑡)⟩ =

∑

𝑛 𝑓𝑛(𝑡)|𝑛⟩. The time-dependent Schrödinger
quation is written as

𝐽𝑛 + 𝐽𝑛−1 + 2𝐻𝑛)𝑓𝑛 − 𝐽𝑛𝑓𝑛+1 − 𝐽𝑛−1𝑓𝑛−1 = 2𝑖ℏ
𝑑𝑓𝑛
𝑑𝑡

. (3)

herefore, the time evolution of the state is given by (ℏ = 1) |𝜙(𝑡)⟩ =
−𝑖𝑡

|𝜓(0)⟩. All we need then is to perform a numerical diagonalization
f the Hamiltonian to obtain all eigenvectors |𝜓𝑗⟩ =

∑

𝑙 𝑐
𝑗
𝑙 |𝑙⟩ and

igenvalues 𝐸𝑗 . Expanding the initial state in the eigenstate basis,
𝜙(0)⟩ =

∑

𝑗 𝐴𝑗 |𝜓𝑗⟩, with 𝐴𝑗 =
∑

𝑙 𝑓𝑙(0)𝑐
𝑗
𝑙 , we get 𝑓𝑛(𝑡) =

∑

𝑗 𝐴𝑗𝑐
𝑗
𝑛𝑒

−𝑖𝐸𝑗 𝑡.
A single-qubit state can be encoded in the first site of the spin

hain by preparing the input |𝜙(0)⟩ = 𝑐0|𝑔⟩ + 𝑐1|1⟩. The actual state
ropagation takes place in the one-magnon subspace. Thus, a figure
f merit of the protocol must include the transition amplitude to the
ther end of the chain 𝑓𝑁 (𝑡). Indeed, if we average the output fidelity
ver all possible inputs {𝑐0, 𝑐1} (covering the whole Bloch sphere), we
btain a monotonic function of such a quantity amplitude, the so-called
veraged fidelity

(𝑡) = 1
2
+

|𝑓𝑁 (𝑡)|
3

cos 𝜉 +
|𝑓𝑁 (𝑡)|2

6
. (4)

e set cos 𝜉 = 1 which is equivalent to a proper local rotation at the
eceiver’s site. Such a fidelity ranges between 1/2 and 1.

The role of the tunable outer couplings 𝑗0 is to induce an effective
wo-level dynamics between the outermost spins [16,21]. It happens
hen 𝑗0 ≪ 𝐽 and there is enough symmetry within the channel

pectrum [8]. In other words, such a configuration can induce a pair of
ilocalized eigenstates at both edges of the chain |𝜓±

⟩ ≈ (|1⟩±|𝑁⟩)∕
√

2.
f this holds we expect pairwise entanglement to establish in between
2

t

abi-like cycles. The concurrence [24] between the communicating
arties in the single-excitation subspace reads

(𝑡) = 2|𝑓1(𝑡)𝑓𝑁 (𝑡)|, (5)

hich goes from 0 (no entanglement) to 1 (maximum entanglement).
In the absence of disorder, weak coupling models deliver quantum

tate transfer at time 𝜏 = 𝑗0∕𝛿𝜆, where 𝛿𝜆 is the gap between the
ilocalized states [8,16,21]. This gap is typically small. A perturbative
pproach yields 𝛿𝜆 ∝ 𝑗20 [21]. The proportionality constant here is a
arameter that depends on the coupling profile of the channel [8].
or a uniform channel, it is simply 1∕𝐽 . The disordered spin chain
ddressed in this work features about the same order of magnitude. But
he fluctuations in the spectrum induced by the disorder will affect the
ransfer time. Therefore, in our simulations we evaluate the maximum
idelity 𝐹max and concurrence 𝐶max in a wide time window up to 𝑡𝐽 =
06 (we shall omit 𝐽 ≡ 1 hereafter). This is more than compatible with
he values of 𝑗0 employed here. All those quantities are further averaged
ver many independent realizations of disorder.

. Results

We emphasize that the quality of the quantum state transfer depends
oth on the strength of 𝑗0 and the nature of eigenstates populating
he channel spectrum. They are dramatically affected by the exponent

[27]. To address the matter let us analyze the eigenstates of the
hannel using the function 𝑑(𝐸𝑗 ) = 𝑁(|𝑎𝑗 | − |𝑏𝑗 |) which, for a given
igenvalue 𝐸𝑗 , |𝑎𝑗 | and |𝑏𝑗 | represent the maximum and the minimum
mplitudes, respectively. For extended states |𝑎𝑗 | ≈ |𝑏𝑗 | rendering
(𝐸𝑗 ) becomes smaller and roughly independent of 𝑁 . For localized
igenstates, 𝑑(𝐸𝑗 ) increases with 𝑁 . Therefore, using this topological
easure we can detect extended modes throughout the spectrum.

By applying exact diagonalization to the disordered channel, we
isplay the function 𝑑 = 𝑑(𝐸) for 𝛽 = 0, 0.5, 1.5, 3, and many system
izes in Fig. 1. For now we are taking ℎ = 0, i.e., there is no external
agnetic field. We can see that when 𝛽 > 1 all curves for 𝐸 < 1 collapse

o a plateau. That is, the quantity does not depend on 𝑁 , which is a
lear signature of extended magnon modes. For 𝐸 > 1, we observe that
(𝐸) increases with 𝑁 . This behavior indicates the presence of localized
odes. This sharp division is the result of strong long-range correlations

hat set in as soon as 𝛽 > 1 [25,28]. If 𝛽 < 1, the system only exhibit
xtended states in the vicinity of the uniform mode (𝐸 = 0). Next,
e address how a quantum state transfer protocol can take place by
arnessing propagating magnon modes.

We are now set to investigate the magnon transfer from one end
f the chain to the other. First, it is important that we tune the local
agnetic fields of sites 1 and 𝑁 in resonance with a given energy of the

hannel spectrum that supports extended states. We choose 𝐸𝑆𝑅 = 0.5
n all simulations below.

In order to evaluate the input-averaged fidelity in Eq. (4), we set
n initial state with 𝑓𝑛(𝑡 = 0) = 𝛿𝑛,1. Fig. 2 shows a histogram of the
aximum fidelity 𝐹max obtained in a time interval 𝑡 ∈ [0, 106] on a

hain with 𝑁 = 60 sites, with the weak coupling 𝑗0 = 0.01 and null
agnetic field ℎ = 0. At this point we want to highlight the role of

he long-range correlation alone. Many values of 𝛽 is considered. When
< 1, the probability distribution is wide, with high-fidelity transfers

eing extremely rare. As discussed earlier, this is a consequence of the
bsence of magnon extended modes around 𝐸 = 0.5. Even if the time
volution fails to deliver |𝑓𝑁 | ≈ 1 in that case, we point out to the fact
hat the dynamics is still occurring almost exclusively in the subspace
panned by |1⟩ and |𝑁⟩ [21,23]. Their effective local energies, however,
s out of tune due to the spatial profile of localized states and the lack
f particle–hole symmetry in the spectrum of the channel [8]. Even
ith the absence of the disordered magnetic field, the diagonal terms
f the Hamiltonian [Eq. (1)] involves a sum of exchange couplings 𝐽𝑛
nd 𝐽𝑛−1, which are correlated random numbers. For 𝛽 > 1 in Fig. 2,

he performance improves dramatically and even more so when 𝛽 > 2.



Journal of Magnetism and Magnetic Materials 579 (2023) 170880M.S.S. Junior et al.

l

D

N
(
f

t
w
p

Fig. 1. Function 𝑑(𝐸) versus energy 𝐸 in the absence of the magnetic field (ℎ = 0). For a given eigenvalue this quantity reads 𝑑(𝐸𝑗 ) = 𝑁(|𝑎𝑗 | − |𝑏𝑗 |), with |𝑎𝑗 | (|𝑏𝑗 |) being the
argest (smallest) eigenfunction amplitude. Each panel depicts a different value of the correlation exponent 𝛽. Various system sizes are considered and each curve is averaged over
500 distinct disorder realizations.
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Fig. 2. Probability distribution of the maximum fidelity 𝑃 (𝐹max) versus 𝐹max. Calcula-
tions are done considering 𝑁 = 60, 𝑗0 = 0.01, ℎ = 0, 𝐸𝑆𝑅 = 0.5 and many values of 𝛽.

ata are obtained for 3000 independent disorder realizations.

ow, despite the presence of disorder, the vast majority of the samples
about 35% out of 3000 independent disorder realizations) provides
idelities above 0.95.

To see that the channel is barely populated during the realization of
he protocol provided that 𝑗0 ≪ 1, regardless of the outcome fidelity,
e evaluate 𝐹𝑐 =

∑𝑁−1
𝑛=2 |𝑓𝑛|

2. This accounts for total occupation
robability within the channel. Results are shown in Fig. 3, where we
3

d

Fig. 3. Total occupation probability of the channel 𝐹𝑐 =
∑𝑁−1
𝑛=2 |𝑓𝑛|

2 versus 𝑗0 for
= 60, 𝐸𝑆𝑅 = 0.5, ℎ = 0, 𝛽 = 0, 1.5, 3. Curves are averaged over 3000 independent

isorder realizations.

lot 𝐹𝑐 versus 𝑗0 for distinct values of 𝛽 = 0, 1.5, 3. We see that the
ormation of a two-level subspace is not affected by the correlation
egree 𝛽. But as 𝑗0 increases, the initial delta-located magnon will
isperse into the channel. The two-level effective description no longer
olds and the quantum state transfer becomes unfeasible. This is shown
n Fig. 4 for the same parameters considered before, now including
he disordered magnetic field with widths ℎ = 0.2 and ℎ = 0.4. The

ecaying trend looks similar in all cases albeit with different scaling
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Fig. 4. 𝐹max versus outer weak couplings 𝑗0 for 𝑁 = 60, 𝐸𝑆𝑅 = 0.5, ℎ = 0, 0.2, 0.4, and 𝛽 = 0, 1.5, 3. Curves are averaged over 3000 disorder realizations.
Fig. 5. Maximum fidelity 𝐹max and maximum concurrence 𝐶max versus 𝛽 for 𝑁 = 60, 𝐸𝑆𝑅 = 0.5, 𝑗0 = 0.01, ℎ = 0, 0.2, 0.4. Both quantities are averaged over 3000 independent
disorder realizations.
t

parameters. We remark that the disordered magnetic field affects the
transfer performance more severely, even when 𝛽 is large.

Fig. 5 shows the dependence of 𝐹max and 𝐶max on 𝛽 in more detail.
It confirms that both quantities are correlated, meaning that bipartite
entanglement between the first and last spins eventually builds up with
the fidelity. Another interesting detail is that the performance gain
induced by the long-range correlations reaches a limit for 𝛽 > 2. Such
a saturated level is set by the residual uncorrelated disorder due to
the magnetic fields. That is, as long-range correlations work out to
reduce the local variance [27] of the diagonal terms of the Hamil-
tonian [Eq. (1)], the uncorrelated series delivered by 𝐻𝑛 eventually
overcomes. Anderson localization then becomes relevant in the channel
spectrum. Yet, it is possible to obtain fidelities higher than the bound
corresponding to a classical transmission of a quantum state, 𝐹 = 2∕3,
ven for disorder widths as large as ℎ = 0.4.

At last, we analyze how the performance scales with the size of the
ystem 𝑁 . Fig. 6 shows such a dependence for 𝑁 = 60 up to 160, with

fixed 𝐸𝑆𝑅 = 0.5, 𝑗0 = 0.01, ℎ = 0.2, and 𝛽 = 1.5, 3. Both the fidelity
nd concurrence are damaged as 𝑁 increases. This is due to the fact
hat 𝑗0 is constant. The number of modes grows with 𝑁 and so the
ensity of states surrounding the energy level 𝐸 = 0.5 to which sender
nd receiver spins are tuned. (This does not occur, for instance, in a
amily of chains that features a topological gap [11].) Still, once again
he fidelities obtained for the system sizes considered in Fig. 6 under
he influence of the two sources of disorder is higher than the classical
hreshold 𝐹 = 2∕3.

As 𝑁 increases, if the same level of fidelity (or a greater one) is
esired 𝑗0 must be adjusted accordingly. A consequence of reducing 𝑗0
s that the perturbative coupling between the outermost spins responds
4

∝ 𝑗20 . It ultimately renders the transfer time to increase ∝ 𝑗−20 . Hence,
here is a physical constraint over the system size 𝑁 . And it should be

set in accordance with the desired speed/fidelity of the quantum state
transfer protocol.

Quantum state transfer protocols can be seen as engineered quan-
tum walks [29]. As such, the spin Hamiltonian employed here is
realizable in devices that allow for a reasonable degree of tuning of
the key parameters, namely couplings between adjacent sites and local
frequencies. In this regard, photonic waveguide arrays are suitable
platforms, with proof-of-principle realizations reported in [30,31] (see
also Ref. [32] for a 2D simulations of a quantum walk). In [31]
Chapman et al. implemented a perfect quantum state transfer protocol
that demands a judicious tuning of all the couplings [15]. Note that the
engineering requirements for the system presented here would much
less demanding due to disorder, except for the parameters pertaining
to the first and last sites. Another potential platform to host a variety
of quantum communication protocols and also simulate spin systems is
based on arrays of superconducting qubits, as shown recently in [33]
for a programmable processor involving 62 qubits.

4. Conclusions

Some degree of disorder is inevitable in spin chains. Therefore, a
proper design of solid-state devices to carry out quantum information
protocols must take its various forms into account. Here, we have
explored a one-dimensional Heisenberg spin−1∕2 model as a quantum
state transfer channel against the influence of disordered magnetic
fields and exchange couplings. The latter features a long-range cor-
related disorder controlled by a parameter 𝛽. The magnetic fields are
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Fig. 6. Maximum fidelity 𝐹max and maximum concurrence 𝐶max versus system size 𝑁 . System parameters are 𝐸𝑆𝑅 = 0.5, 𝑗0 = 0.01, ℎ = 0.2, 𝛽 = 1.5 and 3. Curves are averaged over
3000 distinct disorder realizations.
random following a box-like distribution of width ℎ. The competition
between these two sources of disorder is crucial in defining the quality
of the protocol. The qubit to be transmitted is encoded in a magnon
state created on a ferromagnetic ground state. When ℎ = 0 and 𝛽 >
2, nearly perfect state transfer is achieved. This is possible due to
the presence of extended states within the channel [23,27]. Anderson
localization is induced upon setting ℎ ≠ 0, what deteriorates the overall
quality of the transfer. However, better-than-classical transmission is
still possible for moderate ℎ.
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