
Journal of Magnetism and Magnetic Materials 410 (2016) 165–170
Contents lists available at ScienceDirect
Journal of Magnetism and Magnetic Materials
http://d
0304-88

n Corr
E-m
journal homepage: www.elsevier.com/locate/jmmm
Coherent magnon dynamics in ferromagnetic models with nonuniform
magnetic field and correlated disorder

D.M. Nunes a, A. Ranciaro Neto a,b, F.A.B.F. de Moura a,n

a Instituto de Física, Universidade Federal de Alagoas, Maceió AL 57072-970, Brazil
b Faculdade de Economia, Administração e Contabilidade, Av. Lourival Melo Mota, s/n, bl. 14. Tabuleiro dos Martins 57072-970, Brazil
a r t i c l e i n f o

Article history:
Received 4 December 2015
Received in revised form
19 February 2016
Accepted 4 March 2016
Available online 7 March 2016

Keywords:
A. Disordered systems
B. Phase transitions
C. Spin dynamics
D. Quantum localization
x.doi.org/10.1016/j.jmmm.2016.03.026
53/& 2016 Elsevier B.V. All rights reserved.

esponding author.
ail address: fidelis@fis.ufal.br (F.A.B.F. de Mou
a b s t r a c t

In this work we investigated the nature of the one-magnon eigenstates in a disordered chain at the
presence of a non-uniform magnetic field. In our study, we analyzed the one-dimensional ferromagnetic
Heisenberg model within the one-magnon framework. The spin-spin interaction was considered as a
correlated disorder distribution with power law spectrum ( ) ∝ α−S k k . By using numerical methods we
calculated the time evolution of a initially localized Gaussian wave-packet. Our results reveal that for
weak correlations α( < )1 , the magnetic wave-packet remains localized around the initial position and for
α > 1, we got an oscillatory profile similar to the Bloch-like phenomenology. We calculate the frequency
of these oscillations and observed that it is in a good agreement with the semi-classical approach tra-
ditionally used to explain the Block-like oscillatory behavior.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The localization properties of spin-waves in low dimensional
quantum Heisenberg ferromagnets has been target of recent interest.
It was demonstrated that the finite energy spin-waves are ex-
ponentially localized for any degree of disorder [1]. However, it was
also shown that the typical localization length diverges as one ap-
proaches to the bottom of the band [1–5]. Moreover, it was proved
that the spin-wave dynamics may exhibit a super-diffusive behavior
even in the presence of disorder. The effect of correlated disorder on
the one-dimensional quantum Heisenberg ferromagnet was in-
vestigated by Ref. [6]. By employing mathematical methods such as
renormalization group, integration of the equations of motion and
exact matrix diagonalization, it was shown that extended states ap-
pear for sufficiently strong correlations. Based on Einstein relation,
the dynamics of the spin waves in the quantum Heisenberg S¼1/2
was investigated by analytical means in Refs. [7,8]. The ballistic re-
gime associated with the strong degree of correlations within the
disorder distribution was explained from the generalized Langevin
equation. Within the context of interacting spin waves in S¼1/2
ferromagnetic chains, some studies were done in the past (see, for
example, Ref. [9]). Because of the spin considered, two spin excita-
tions can never occupy the same site, i.e, this interaction is closely
related to an infinite Coulomb repulsion. It was shown that the lo-
calization length of high-energy states are rather small but diverges
ra).
as one approaches the ground state energy [9]. Furthermore, the
one-dimensional quantum disordered S¼1/2 Heisenberg ferromag-
netic model with long-range correlated exchange couplings was
studied in Ref. [10]. By using a numerical diagonalization of the
complete Hamiltonian, the spin-wave participation number was
computed. This procedure indicates that, in the regime of strongly
correlated random exchange couplings, there are extended spin
waves with finite excitation energies. The effect of the kinematic
repulsion between the two magnons on the dynamics of two-spin
excitations was also investigated. The competition between the
kinetic repulsion and ballistic dynamics in the strongly correlated
regime leads to a strong degree of spin-spin correlations [10].

Another interesting contribution within the context of spin
waves dynamics under effect of interacting terms was made in Ref.
[12]. The authors investigated the localization of a single spin-
wave state in finite a crystalline Heisenberg model with spin-1/2
under effect of a nonuniform magnetic field. It was demonstrated
that as the magnetic field gradient is increased, localization starts
at the chain ends and gradually involves magnon states inside the
chain [12]. The authors also studied how the superposition of an
extended spin wave and a weakly nonuniform magnetic field can
promote magnon Bloch-like oscillations (BO). The richness of
magnetic systems with interacting terms or nonuniform magnetic
field can be observed for example in Refs. [13,14]. In Ref. [13] it was
shown that the magnon flow could also be generated by a non-
uniform external magnetic field. The transport of magnetization in
insulating magnetic systems it was analyzed in Ref. [14]. It was
demonstrated that within the ferromagnetic context, the magne-
tization dynamics can be analyzed as a transmission of magnons
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and the spin conductance depends on the temperature. For anti-
ferromagnetic chains, the spin conductance is quantized and a sort
of generalized Hall effect emerges.

In our work we are interested in providing further contribution
along these lines. We will adopt a quantum Heisenberg model
with spin 1/2 and disordered exchange spin–spin coupling. In our
model we will take into account the effect of correlated disorder as
well as the presence of a nonuniform magnetic field. We will in-
vestigate in details the competition between disorder, correlations
and external magnetic field. The spin–spin interaction will be
considered as a correlated disorder distribution with power law
spectrum ( ) ∝ α−S k k . For α¼0 we recover the standard Heisenberg
model with uncorrelated disordered local couplings. For α > 0, the
model contains intrinsic correlations within the spin–spin cou-
plings. We will solve the Schrödinger equation by using a precise
numerical formalism and calculates the spin-wave evolution. Our
numerical calculations suggest that, for weak correlations α( < )1 ,
the magnetic wave-packet remains localized around the initial
position. For α > 1 our results reveal an oscillatory profile similar
to Bloch-like oscillations. Therefore, our calculations suggests the
possibility of one-magnon's Bloch oscillations in chains with cor-
related disorder. We calculate the frequency of these oscillations
and observed that this frequency is in a good agreement with the
spatial derivative of the energy interaction between the magnon
and the magnetic field. Moreover, a semi-classical approach was
also used to give a better explanation of the oscillatory behavior
found.
2. Model and formalism

Our model consists of a quantum ferromagnetic Heisenberg
model with N spins 1/2 under effect of a nonuniform magnetic

field
→
Hn. According to [6,12] we write the Hamiltonian below:

∑= − {
→ →

+
→ →

}
( )=

+J S S H S. .
1n

N

n n n n n
1

1

where Jn represent the exchange couplings connecting sites n and
nþ1. In our work we will consider Jn as the trace of a fractional
Brownian motion with power spectrum ( ) ∝ α−S k k [6,15–18]. To
build this sequence, we generate Jn by using the following proce-
dure: First we generate the sequence Vn defined as:

∑ π Φ= ( ) ( + )
( )

α

=

−V k kn Ncos 2 /
2

n
k

N

k
1

/2
/2

where k is the wave vector of the modulations on the random
coupling landscape and Φk are N/2 random phases uniformly
distributed in the interval π[ ]0, 2 . The exponent α controls the
degree of correlations within the sequence { }Vn . Then, we nor-
malize the sequence in order to keep the mean value zero and the

standard deviation equal to unit: = ( − 〈 〉) 〈 〉 − 〈 〉⁎V V V V V/n n n n n
2 2 .

After these two steps, in order to assure nonzero spin interaction,
we define exchange coupling as: = +⁎J V 4.5n n . The nonuniform

magnetic field is defined as ν η
→

= [( ) ]→ = ( )→H H n z Hn zn B 0 [12]. We are
interested in studying the one-magnon subspace of this Hamilto-
nian. The typical time-dependent wave-function of such excitation
is given by ϕ| ( )〉 = ∑ | 〉t f nn n where | 〉n represents a wave-function
of the chain state with a single reversed spin at site n ( | 〉 = | 〉−n S 0n
where | 〉0 is the ferromagnetic ground state). The time-dependent
Schrödinger equation can be written as:

( + ) ( ) − − + ( ) = ℏ
( )

( )− + − −S J J f t SJ f SJ f H f t i
df t

dt 3n n n n n n n n n
n

1 1 1 1

We emphasize that =H Hnn is the magnetic field at the n-th spin.
We obtained the numerical solution of Eq. (3) for a given initial
condition ϕ| ( = )〉t 0 by following the formalism described in [6]:
First we diagonalize the Hamiltonian described in Eq. (1) in order
to find all eigenfunctions ψ{| 〉 = ∑ | 〉}c mj m m

j and its associated ei-
genvalues { }Ej . Using these eigenfunctions we expand ϕ| ( = )〉t 0 as:

∑ϕ ϕ ψ ψ| ( = )〉 = (〈 ( = )| 〉)| 〉
( )

t t0 0
4j

j j

Then, by using that ϕ ϕ| ( )〉 = | ( = )〉−t e t 0i t we can find fn(t) with
the following equation:

∑( ) = { }
( )

−f t Z c e
5

n
j

j n
j iE tj

where = ∑ ( = )Z f t c0j m m m
j . This formalism is stable, fast and keeps

the wave-function normalized ( ∑ | ( )| = )f t 1n n
2 along the entire

time interval. We emphasize that we can solve Eq. (3) by using
standard methods like Runge–Kutta, for example. However, due to
the presence of the diagonal energy associated with the magnetic
field, it is much more difficult to perform the numerical integra-
tion and keep the wave-function normalized. In our work we
calculate the magnon position 〈 ( )〉x t defined as:

∑〈 ( )〉 = | ( )|
( )

x t n f t
6n

n
2

3. Results and discussions

In our calculations, the initial wave-packet was set with a
Gaussian distribution localized at the center of chain. Therefore,
the initial condition was defined as ϕ| ( = )〉 = ∑ ( = )| 〉t f t n0 0n n

where ( = ) = −( − )f t Ae0n
n N/2 /42 and A is a normalization constant.

Calculations were made for N¼500 spins. We are using open
boundary conditions. In Fig. 1 we plot the magnon position 〈 ( )〉x t
versus time for α = 0, 0.5, 1 and H¼0 up to 2. We observe that the
magnon remains localized around the initial position and exhibits
an incoherent oscillatory behavior. We emphasize that for α¼1
and for strong values of H (H¼1 and 2) the magnon's position
exhibits a quasi-coherent dynamics thus suggesting a oscillatory
framework. In fact, as the degree of correlations is increased
α( > )1 we verified a magnon's oscillation around the initial posi-
tion. We see these results in Fig. 2 for α = 1.5, 2, 2.5. The magnon
remains localized around the initial position however, 〈 ( )〉x t ex-
hibits an oscillatory behavior quite compatible with the well
known Bloch oscillation phenomenon. We also noticed that as the
H value is increased, the size of region in which that the magnon
oscillates decreases. So, we find another similarity with electronic
Bloch oscillations.

In Fig. 3 we plot | |fn
2 versus n and t for α¼0 and 2.5 and H¼0.5.

An oscillatory profile is observed for α = 2.5. For α¼0, the 3d plot
of the wave-packet is in a good agreement with results shown in
Fig. 1: the magnon remains localized and coherent oscillations are
not evident. Our results in fact suggests that this ferromagnetic
model under effect of nonuniform magnetic field and strong cor-
related disorder exhibits Bloch-like oscillations. We stressed that
for large α, the one-magnon disordered Hamiltonian shows a
phase of extended states at the low-energy region [6]. In this way,
our results suggest that the one-magnon wave-packet oscillates in
that band. We will return to discuss this point in details at the end
of this section. The most important properties of the Bloch Oscil-
lations phenomenology is its intrinsic frequency and the size of
region where the particle oscillates. We analyzed the frequency of
these oscillation by computing the Fourier transform of 〈 ( )〉x t for
distinct values of H. In Fig. 4 we plot the Fourier transform of

ω〈 ( )〉 ( ( ))x t x computed for α¼2.5 and =H 0.5, 1, 2. It seems that
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Fig. 1. The magnon position 〈 ( )〉x t versus time for α = 0, 0.5, 1 and H¼0 up to 2. We observe that magnon remains localized around the initial position. For α¼1 and for
strong values of H (H¼1 and H¼2) the magnon's position exhibits a quasi-coherent oscillatory framework.
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the magnon's oscillatory behavior has a dominant frequency
ω ≈ H . This is an interesting result which strengthens the previous
statement about the Bloch-like oscillation of the one-magnon
wave-packet.

Following the semi-classical theory for electronic Bloch-oscil-
lation [18], it is well known that in disorder-free systems, a uni-
form electric field F causes the dynamic localization of the electron
and gives rise to an oscillatory motion of the wave packet (Bloch's
oscillation). The period of these oscillations can be estimated as
τ π= F2 /B , i.e. the frequency is ω = F . By comparing the energy
interaction of an one-electron with an uniform electric field

( = )F E Fne to the diagonal term in our Schrödinger equation (see
Eq. (3)) we realize that H is analogous to F within the one-magnon
theory. Similarities between the static electric field F within the
electronic model and the spatial derivative of the magnetic energy
H were also anticipated in Ref. [12].

Then, by using these simple arguments we understand the
frequency of oscillations ω ≈ H obtained in Fig. 4. We emphasize
that the analogy between the static electric field F within the
electronic model and the spatial derivative of the magnetic energy
H was also anticipated in Ref. [12].

Another key signature of the Bloch's oscillation phenomenon is
noticed by direct relation between the size L of the segment over
which the particle oscillates and the width Wb of free particle's
band. By adapting the semi-classical theory to the one-magnon
formalism, the relation should be: =L W H/b . Estimates of the
width of the extended one-magnon states (Wb) can be done by
considering the Heisenberg Hamiltonian in the absence of
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Fig. 2. For α > 1 the magnon remains localized around the initial position and exhibits a Bloch-like oscillatory profile.
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magnetic field (H¼0) and by applying a transfer matrix formalism
[19,20] in order to calculate the inverse of the localization length

λ = { ( ) [| ( ) | | ( ) |]}→∞ N Q F F1/ lim 1/ log 0 / 0N N . Here, ( ) = ( )F 0 f
f
1

0
is a

generic initial condition and QN is the product of all transfer ma-
trices. The inverse of localization length is used to understand the
nature of one-magnon eigenstates and to estimate the width of
band of extended magnons. Extended states exhibit λ →1/ 0 while
localized ones displays λ1/ finite. In Fig. 5 we plot the inverse of
the localization length λ1/ versus energy for α = 1.5, 2, 2.5. As a
result, λ1/ vanishes in a finite low energy region. We also observe
that the size of this region increases as the degree of correlations is
increased. Within our model, the size of this energy window re-
present the width of the band of extended one-magnon states (i.e.
Wb). Therefore, by estimating Wb from Fig. 5 we may compare it to
the amplitude L of the oscillation. Following Fig. 5 ≈W 4.5b for
α = 1.5, ≈W 5.b for α¼2 and ≈W 6.b for α¼2.5. By those values,
we verify that the amplitude L of the magnon oscillation roughly
agrees with the semi-classical prediction ≈L W H/b .
4. Summary and conclusions

We have studied the spin 1/2 one-dimensional quantum fer-
romagnetic Heisenberg model with disordered spin–spin ex-
change couplings and a non-uniform magnetic field. In our study,
we analyzed the one-dimensional ferromagnetic Heisenberg
model within the one-magnon framework. The spin–spin inter-
action was considered as a long-range correlated disorder dis-
tribution with power law spectrum ( ) ∝ α−S k k . We have also in-
troduced a non-uniform magnetic field according to the form
→

= →H Hnzn . By using numerical methods we calculated the time
evolution of an initially localized Gaussian wave-packet. Our
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numerical calculations indicate that for weak correlations α( < )1
the magnetic wave-packet remains localized around the initial
position. For α > 1 we have obtained an oscillatory behavior si-
milar to Bloch-like oscillations. We investigate the frequency and
the amplitude of these oscillations and, in our numerical tolerance,
the results were quite compatible with the semi-classical treat-
ment of that phenomenon. Therefore, our results indeed suggest
the possibility of one-magnon's Bloch oscillations in ferromagnetic
chains with correlated disorder. We emphasize that this is an in-
teresting and new result once, in general, Bloch-like oscillations
are found in crystalline systems [12]. In our work, we demon-
strated by numerical means that, even at the presence of strong
disorder, it is possible to stabilize coherent spin-wave oscillation
with controlled frequency. We hope that the present work will
stimulate further studies on the transport of magnetic excitations
in correlated disordered magnets.
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