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a b s t r a c t

We consider the one-dimensional quantum disordered S ¼ 1
2 Heisenberg ferromagnetic chain model

with long-range correlated exchange couplings and study the nature of collective two-spin excitations.

By using an exact diagonalization of the Hamiltonian in the two-spin flip subspace, we compute the spin

wave participation number to characterize the localized or delocalized nature of the two-magnon

states. For strongly correlated random exchange couplings, extended two-spin excitations with finite

energy appear. Integrating the time-dependent Schroedinger equation, we follow the time-evolution of

an initially localized two-spin state. We find that, associated with the emergence of extended spin

waves, the wave-packet mean-square displacement develops a ballistic spread. Further, the single-spin

wave-packet acquires an asymmetric profile due to the kinematic interaction between the excited spins.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Anderson theory plays a key role on the localization
properties of eigenfunctions in disordered systems [1,2]. The
localization–delocalization transition for weak disorder in three-
dimensional geometries, and its absence in low dimensional
systems with time reversal symmetry at any disorder strength, are
its most known predictions. The critical exponent n that describes
the divergence of the localization length x1 / jE� Ecj

n, where
E indicates the Fermi energy and Ec stands for the mobility edges
separating extended from localized states, is directly related to the
exponent m for the conductivity at zero temperature in doped
semiconductors and amorphous materials [3–5]. The localization
of collective excitations by a random potential is a quite general
feature. It applies, for example, to the study of magnon localiza-
tion in random ferromagnets and vibrational modes in harmonic
systems. In fact, it is possible to map the Heisenberg Hamiltonian,
as well as the one-dimensional harmonic chain with random
masses, into the Anderson model for disordered electronic
systems with correlated disorder [6–10,14,15].

Several works have been devoted to the study of the
localization properties of spin waves in low dimensional quantum

Heisenberg ferromagnets. Localization is known to have a
profound impact on the transport properties of magnetic systems.
In general, it has been demonstrated that the finite energy spin
waves are exponentially localized for any degree of disorder.
However, the typical localization length diverges as one ap-
proaches to the bottom of the band [6–9]. In addition, it was
shown that an initially localized spin excitation may exhibit a
super-diffusive spread in the presence of disorder in contrast to
the random oscillations over a finite segment displayed by an
electronic wave-packet [9,10]. Further, the diffusion of spin waves
in ferromagnetic host systems with antiferromagnetic impurities
shows no evidence of strong localization [11]. Also, the effects of
localization in the spin and charge conductivity of ferromagnetic
systems have been theoretically evaluated [12,13]. Recently, the
one-dimensional quantum Heisenberg ferromagnet with ex-
change couplings exhibiting long-range correlated disorder was
studied [14]. Using renormalization group, integration of the
equations of motion and exact diagonalization, it was shown that
extended states appears for sufficiently strong correlations. In fact,
correlated disorder was shown to be a key ingredient to promote
delocalization in low dimensional systems [16–20].

Some static and dynamic properties associated with the two-
magnon excitations in finite S ¼ 1

2 ferromagnetic chains with
uncorrelated disorder were studied in Ref. [21]. As a S ¼ 1

2 spin
only allows for a single excitation, i.e., two-spin excitations can
never occupy the same site, the effective spin–spin interaction is
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closely related to an infinite strength Hubbard repulsion. It was
shown that the localization length of high-energy states are rather
small but diverges as one approaches the ground state energy. The
long localization length of the low-energy states give rises to
strong spin–spin correlations which are suppressed at high
energies as the localization length becomes smaller than the
chain size. Further, the time-evolution of two initially localized
spin deviations was followed. It was shown that the single-spin
wave-packet develops asymmetric tails due to the effective
spin–spin repulsion with distinct scaling exponents governing
the temporal evolution of length scales related to the average
spin–spin distance and the wave-packet dispersion [21].

In this work, we study the two-magnon excitations in the one-
dimensional quantum disordered S ¼ 1

2 Heisenberg ferromagnet
chain model with long-range correlated exchange couplings.
By using an exact diagonalization approach, we compute the
spin–wave participation number which will be used as a measure
of the spacial extension of the two-spin excitations. The numerical
calculations indicate that, in the regime of strongly correlated
random exchange couplings, there are extended spin waves with
finite excitation energies. We will also follow the time-evolution
of the mean-square displacement of the wave-packet. We will
explore the influence of the kinematic repulsion between the two
magnons and the emergence of extended states on the dynamics
of two-spin excitations.

2. Model and formalism

We will consider finite disordered chains with N spins (S ¼ 1
2)

coupled via a first neighbors isotropic Heisenberg exchange
interaction, whose Hamiltonian can be written as

H ¼ �
X

n

Jn;nþ1
~Sn: ~Snþ1. (1)

The couplings Jn;nþ1 ¼ Jn will be considered as long-range
correlated random ferromagnetic exchange integrals. In order to
generate exchange sequences with power-law decaying pair
correlation function, we firstly generate the following auxiliary
sequence:

xn ¼ tanh
XN=2

k¼1

1

ka=2
cos

2pnk

N
þfk

� �" #
, (2)

which is restricted to the interval �1pxnp1 and whose pair
correlation function decays asymptotically as 1=ra. The hyperbolic
transformation of the series brings the advantage of bounding the
interval of the random variable without changing its asymptotic
correlation function. Such power-law decaying correlation func-
tion actually characterizes the absence of a typical correlation
length in the disorder distribution and allows the investigation
of the influence of scale-free disorder on the properties of
the collective magnetic excitations. In the above equation, k is
the wave-vector of the modulations on the random variable
landscape, fk are N=2 random phases uniformly distributed in the
interval ½0;2p� and the exponent a controls the degree of
correlations. The sequence of exchange integrals is obtained after
normalizing the auxiliary sequence to have unitary variance (Dx)
and displacing it to avoid negative (antiferromagnetic) couplings.
In the following, we use Jn ¼ 2þ xn=Dx. With the above procedure,
the distribution of couplings has sharp edges for any value of a,
which results on long-range correlated sequences of strictly
ferromagnetic couplings even when very large chains are
considered.

For a ¼ 0, we recover an uncorrelated random ferromagnetic
couplings distribution. The ground state for a ferromagnetic chain

consists of a perfectly ordered chain with all spins aligned
on the same direction. We will refer to the ground state
as the vacuum state j0i in what concerns to the presence of
magnetic excitations. One-magnon states are the Hamiltonian
eigenstates on the sub-space generated by all single flip states
jfni ¼ S�n j0i. In the presence of disorder, the one-magnon states
are spatially localized, with the characteristic localization length
diverging as one approaches the bottom of the excitation energy
band. Here, we will explore the nature of the Hamiltonian
eigenstates on the sub-space generated by all two flip
states. The basis for this sub-space can be represented by
jFn1 ;n2

i ¼ S�n1
S�n2
j0i where jfn1 ;n2

i is the state with spin flips
located at sites n1 and n2.

In order to characterize the nature of the two-magnon
eigenstates, we solve the time-independent Schroedinger equa-
tion to obtain the coefficients fn1 ;n2

in the expansion over the
two-flip bases jFi ¼

P
fn1 ;n2

jfn1 ;n2
i. The coefficients obey the

following recursion relation:

2�fn1 ;n2
¼ ðJn1�1;n1

þ Jn1 ;n1þ1 þ Jn2�1;n2
þ Jn2 ;n2þ1Þfn1 ;n2

� Jn1 ;n1þ1fn1þ1;n2
� Jn2 ;n2þ1fn1 ;n2þ1

� Jn1 ;n1�1fn1�1;n2
� Jn2�1;n2

fn1 ;n2�1 (3)

for the case of n1 and n2 not being neighboring sites. The
eigenstate coefficient for spin flips at neighboring sites follows a
simpler recursive relation in the form:

2�fn;nþ1 ¼ ðJn�1;n þ Jnþ1;nþ2Þfn;nþ1 � Jnþ1;nþ2fn;nþ2

� Jn�1;nfn�1;nþ1. (4)

The above set of NðN � 1Þ=2 equations provides the coefficients of
all two-magnon eigenstates. As the numerical algorithm requires
the diagonalization of M �M matrices, with M ¼ NðN � 1Þ=2, we
are restricted to compute the two-magnon states on relatively
small chains. In order to infer about the limit of infinite chains, we
will employ a finite-size scaling analysis. In the next section, we
will show results derived from the stationary states on chains
with N ¼ 21, 41, 81 and 101 spins. Distinct realizations of the
distribution of exchange couplings will be used to perform a
configurational average over the disorder, namely 8000 realiza-
tions for the smallest chain size and 500 realizations for the
largest one. In order to study the spacial distribution of the two-
magnon states, we computed the participation number of each
eigen-state defined as

P ¼
1P

n1on2
jfn1 ;n2

j4
. (5)

For extended two-magnon states, the participation number
shall scale as N2 (actually the maximum participation number is
M ¼ NðN � 1Þ=2 for a uniform state). The states with localization
lengths much smaller than the chain size have size-independent
participation numbers. In addition, we will investigate the
time evolution of a wave-packet initially composed of two
flipped spins at a distance d0. We solve numerically the time-

dependent Schroedinger equation i_d=dtjFðtÞ4 ¼ HjFðtÞi where

H is Hamiltonian (1) and jFðtÞi ¼
P

n1on2
fn1 ;n2

ðtÞjfn1 ;n2
i.

The time-dependent coefficients fn1 ;n2
ðtÞ obey a set of differential

equations, derived from (4), for spin deviations at neighboring
sites and from (3) for non-neighboring deviations, namely

i
dfn;nþ1ðtÞ

dt
¼ ðJn�1;n þ Jnþ1;nþ2Þfn;nþ1ðtÞ � Jnþ1;nþ2fn;nþ2ðtÞ

� Jn�1;nfn�1;nþ1ðtÞ (6)
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and

i
dfn1 ;n2

ðtÞ

dt
¼ ðJn1�1;n1

þ Jn1 ;n1þ1 þ Jn2�1;n2
þ Jn2 ;n2þ1Þfn1 ;n2

ðtÞ

� Jn1 ;n1þ1fn1þ1;n2
ðtÞ � Jn2 ;n2þ1fn1 ;n2þ1ðtÞ

� Jn1 ;n1�1fn1�1;n2
ðtÞ � Jn2�1;n2

fn1 ;n2�1ðtÞ,

n24n1 þ 1, (7)

where we used units of _ ¼ 1. We solved these equations
numerically by using a high-order method based on the Taylor
expansion of the evolution operator:

VðDtÞ ¼ expð�iHDtÞ ¼ 1þ
Xno

l¼1

ð�iHDtÞl

l!
, (8)

where H is the Hamiltonian. The wave-function at time Dt is given
by jFðDtÞi ¼ VðDtÞjFðt ¼ 0Þi. The method can be used recursively
to obtain the wave-function at time t. The following results were
taken by using Dt ¼ 0:05 and the sum was truncated at no ¼ 20.
This cutoff was sufficient to keep the wave-function norm
conservation along the entire time interval considered.
We followed the time-evolution of the spacial extension of the
two-magnon states defined as

xðtÞ ¼
X

n1on2

jfn1 ;n2
ðtÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � hn1ðtÞiÞ

2
þ ðn2 � hn2ðtÞiÞ

2
q

, (9)

where

hniðtÞi ¼
X

n1on2

nijfn1 ;n2
ðtÞj2; i ¼ 1;2. (10)

The spacial extension xðtÞ gives a measure of the wave-function
spread on the n1 � n2 plane.

3. Results

In Fig. 1, we show results for the scaled participation number
PðEÞ=M (M ¼ NðN � 1Þ=2) versus energy E taking into account all
states within a small energy window around E. Results were
obtained using exact diagonalization on chains with N ¼ 41, 61,
81 and 101 sites and (a) a ¼ 0 and (b) a ¼ 3. For a ¼ 0 our results
show that the high-energy states are well localized presenting a
short localization length. The collapse of data from distinct chain
sizes at E ¼ 0 indicates that the low-energy spin excitations have
finite localization lengths much larger than the chain sizes
considered. The normalized participation has a pronounced
decrease around E ’ 6. This is the typical energy scale that

delimits the pseudo-band edge above which the density of
states decays exponentially and the states are strongly localized.
For a ¼ 3 the scaled participation number PðEÞ=M displays a well-
defined data collapse in the low energy regime. This result
suggests the existence of a phase of extended two-magnons
states. We collected in Fig. 2 results for the scaled participation
function near the band bottom PðEo1Þ=M versus the exponent
a of the power-law spectral density of the correlated potential for
lattices with N ¼ 41, 61, 81, 101 sites. For a42 the scaled
participation function PðEo1Þ=M becomes size independent,
i.e., the participation function is proportional to M ¼ NðN � 1Þ=2.
This feature is a clear signature of the existence of extended sates
at the band bottom for a42.

The time evolution of the spacial extension xðtÞ, obtained by
numerical integration of the time-dependent Schroedinger equa-
tion, is shown in Fig. 3. A configurational average over 30 distinct
runs was employed in chains with N ¼ 2000 sites. In the absence
of correlations (a ¼ 0), a diffusive-like spread, xðtÞ / t0:50ð5Þ, is
observed after a short transient. This behavior is in agreement
with the previous literature on the dynamics of one and two-
magnons in uncorrelated random ferromagnets [9,21]. For a ¼ 3,
the wave-packet presents a ballistic spread before reaching the
lattice boundaries xðtÞ / t1. This result gives further support to
the previous indication that this ferromagnetic chain displays a
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correlated chain is a signature of extended two-magnon states.
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phase of extended two-magnons states induced by long-range
correlated exchange couplings.

The long-time one-magnon wave-packet is strongly influenced
by the effective kinematic interaction between the two magnons.
In Fig. 4, we report the one-magnon wave-packet profile
(jfnj

2 ¼
P

m jfn;mðtÞj
2) computed using N ¼ 1000, a ¼ 0 and

d0 ¼ 200 (a) and d0 ¼ 4 (b,c). One notices in (b) and (c) that the
single-spin wave-packet develops power-law tails with distinct
characteristic exponents on each side. The larger decay exponent
is a consequence of the effective repulsion between the spins
which difficult the single-spin wave-packet to spread towards the
region predominantly occupied by the second spin excitation. For
d0 ¼ 200, no distortion of the single-spin wave-packet was
observed, reflecting the absence of effective interaction between
the spins up to the time scale reported (see Fig. 4(a)). In the
presence of strongly correlated disorder (see Fig. 4(d–f)) the
distortion of the single-spin wave-packet was also detected for
small d0. In this case, due to the presence of an energy band of
extended states, the width of each spin wave-packet becomes
much larger than in (a–c) case for a ¼ 0. Therefore, the effective
repulsion between the spins is stronger resulting in a highly
asymmetric profile. The same quadratic decay results from the
kinematic repulsion. In the exterior region, no power-law regime
sets up. The wave-packet just exhibits a sharp cutoff that signals
the wave-packet front. The structure observed in these wider
wave-packets reflects the random nature of the underlying
exchange integrals which promotes random scattering of the
wave-packet. The asymmetric time-evolution of the wave-packet
is more clearly illustrated in Fig. 5 which shows the time-
evolution of both magnons through the lattice. This calculation
was done using N ¼ 1000, d0 ¼ 4 and a ¼ 0 (a) and a ¼ 3 (b). The
effective kinematic repulsion between the spins is reflected by the
small spread of the wave-packet toward the region occupied by
the second spin excitation, an effect which is quite more evident
in the case of strongly correlated exchanges.

Finally, we study in Fig. 6 the time dependence of the wave-
packet centroid of both magnons (hn1ðtÞi and hn2ðtÞi), as well as

the time dependence of the correlation function zðtÞ ¼
hn1ðtÞn2ðtÞi� hn1ðtÞihn2ðtÞi. These calculations were performed for
N ¼ 2000, and two typical values of d0 and a. In agreement with
Figs. 5 and 6, these figures further characterize the role played by
the effective kinematic repulsion between the spins. Particularly, a
pronounced collision effect is observed for a ¼ 3 (see Fig. 6(d)). It
results from the competition between the ballistic propagation
driven by the extended states and the effective kinematic
repulsion. In Fig. 6(e), the time dependent correlation function
for a ¼ 0 is only weakly increasing with time reflecting the
localized character and the diffusive spread of both magnons. On
the other hand, zðtÞ grows much faster for a ¼ 3 corroborating our
previous finding of a strong repulsion due to the presence of
extended two-magnon states in the regime of long-range
correlated disorder. The initial plateaus represent the regime on
which the two excitations have a negligible overlap. In this
regime, the correlation function is very small and below the
accuracy of the numerical integration of the time-dependent
Schroedinger equation. The discontinuity of the derivative
actually signals the collision time after which the magnons start
to repel each other.

4. Summary and conclusions

In summary, we investigated some stationary and dynamical
aspects of two-magnon excitations in one-dimensional quantum
disordered S ¼ 1

2 Heisenberg ferromagnet chains with long-range
correlated exchange couplings. To introduce long-range correla-
tions in this system, we considered a Fourier method to construct
a on-site energy sequence with spectral density SðkÞ / 1=ka. Using
an exact diagonalization formalism, we investigated the partici-
pation function of all energy eigenstates. For weakly correlated
exchange couplings (ao2), the two-magnons states remain
exponentially localized, similar to the Anderson localization of
single-spin collective excitations. The high-energy spin-excita-
tions have rather small localization lengths. However, the
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localization length diverges as one approaches to the ground state.
The numerical calculations indicated that, for strongly correlated
random exchange couplings, extended spin waves appear for
nonzero energies. Using the participation number scaling near the
band bottom, we showed that a band of extended states appears
for a42. By integration of the time-dependent Schroedinger
equation, we computed the mean-square displacement of the
wave-packet. We found that, associated with the emergence of
extended spin waves for a42, the wave-packet mean-square
displacement displays a ballistic spread, in contrast with the
diffusive dynamics in the case of uncorrelated random exchanges.
This result further characterizes the extended nature of the low-
energy states in the strongly correlated regime. Moreover, we
showed that the one-magnon wave-packet develops an asym-
metric profile due to the effective kinematic repulsion between
the magnons. In the interior region of the chain, the wave-packet
develops a quadratically decaying tail irrespective to the presence
of correlations. On the other hand, the 1=r decay typical of
uncorrelated random ferromagnets, associated with the diffusive
spread to the exterior region, is replaced by a sharp cutoff in the

presence of strong correlations with no intermediate power-law
regime. The combined effect of the kinematic repulsion and
ballistic dynamics in the strongly correlated regime leads to the
build up of spin–spin correlations which are substantially larger
than in ferromagnetic chains with uncorrelated disorder. We hope
that the present work will stimulate further studies of the
transport of interacting magnetic excitations in correlated
disordered magnets.
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Fig. 6. (a–d) Time dependent wave-packet centroid of both magnons (hn1ðtÞi and hn2ðtÞi) as well as (e) the time dependent correlation function

zðtÞ ¼ hn1ðtÞn2ðtÞi � hn1ðtÞihn2ðtÞi. Calculations were done for N ¼ 2000, d0 ¼ 4 and 70, while a ¼ 0 and 3. Notice that the kinematic interaction repels the wave-packet

centroids. This effect is enhanced in the regime of strongly correlated disorder which results in more correlated wave-packets. The initial plateaus in the time-dependent

correlation function is due to the finite accuracy of the numerical integration and actually represent the regime on which the two excitations have a negligible overlap.
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