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In this paper, we investigate the in°uence of electron-lattice interaction on the stability of
uniform electronic wavepackets on chains as well as on several types of fullerenes. We will use

an e®ective nonlinear Schr€odinger equation to mimic the electron–phonon coupling in these

topologies. By numerically solving the nonlinear dynamic equation for an initially uniform
electronic wavepacket, we show that the critical nonlinear coupling above which it becomes

unstable continuously decreases with the chain size. On the other hand, the critical nonlinear

strength saturates on a ¯nite value in large fullerene buckyballs. We also provide analytical

arguments to support these ¯ndings based on a modulational instability analysis.
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1. Introduction

The direct connection between the time-dependent behavior of electronic wave-

packets and the electrical properties of materials has impelled the development of

new studies devoted to the one-electron dynamics within the context of condensed

matter physics.1–3 Since the works by Anderson and co-workers, it is known that the

presence of disorder is a key factor governing the extension of the wave function.3 It

was demonstrated that all states in a disordered system with dimension below two

are localized in a small fraction of the lattice, even for a small disorder degree. We

emphasize that, although the Anderson localization has been developed in the

electronic context, such prediction is still valid for every ¯eld described by a wave

equation. For instance, Anderson localization of electromagnetic ¯elds,4 water

waves5 and Bose–Einstein Condensates (BEC)6 has been reported in the literature.

One interesting issue concerning the BEC issue is that its dynamic is well described
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by the Gross–Pitaevskii equation7 and the nonlinearity present in this equation

reveals exciting new physical properties.8–10 In general, even within the electronic

context, nonlinearity also can be present. It was shown that the interaction between

electrons and optical phonons is well described by a nonlinear Schr€odinger equa-

tion.10,11 One of the most interesting phenomenon promoted by the nonlinearity is

the self-trapping (ST) which occurs when the nonlinearity strength exceeds a critical

value of order of the band width.11–17 In this regime, an initially localized wavepacket

does not spread over the system, remaining localized around its initial position.

Usually, the electron–phonon interaction included in the nonlinear Schr€odinger

equation commonly found in the literature describes the coupling between the lattice

vibration and the diagonal electronic matrix elements of the electron Hamiltonian,

namely, diagonal linearity. In fact, it was shown that the lattice vibration also can

couple with the o®-diagonal electronic matrix elements.18 In Ref. 19 the e®ect of o®-

diagonal nonlinearity on the electronic time-evolution was investigated. The authors

analyzed the second momentum of the electronic probability and the participation

number for di®erent nonlinearity strengths. In general, it was demonstrated that the

o®-diagonal nonlinearity also provides the trapping of the wavepacket in a ¯nite

fraction of the system.

The competition between topology and non-linearity has attracted a great in-

terest in the last years. In Ref. 20, a detailed study of the ST transition in square and

honeycomb lattices were reported showing that the ST threshold continuously grow

as a function of the initial wavepacket width. By using a tight-binding Hamiltonian

approach, the dynamics of one-electron wavepackets in a twisted ladder geometry

with adiabatic electron–phonon interaction was investigated.21 The considered

model mimics the electronic wavepacket dynamics in DNA-like segments. In the

presence of electron–phonon interaction, the Anderson localization existent in DNA

segments is suppressed and a delocalized sub-di®usive regime takes place. A partially

self-trapped behavior develops at strong nonlinearities.21 Self-trapping at large

nonlinearities was also reported to take place in carbon nanotubes with strong

electron–phonon coupling.22 More recently, it has been evidenced that the relaxation

process of the nonlinearity has a profound impact in the wavepacket dynamics and in

the formation of self-trapped stationary states in C60 buckyballs.23

In this paper, we advance in the study of the wavepacket electron dynamics in the

presence of an e®ective nonlinearity by numerically investigating the time-evolution

of an initially uniform electronic wavepacket on chains as well as on several fullerene

topologies. In our model, we include the e®ect of electron-lattice interaction through

an e®ective nonlinear Schr€odinger equation. We will solve numerically the dynamic

nonlinear equation for an uniform wavepacket and investigate its stability. Our

numerical calculations reveal the existence of a strong dependence of the critical

nonlinear coupling above which the uniform state is unstable in linear chain, con-

trasting with its weak size dependence on fullerene buckyballs. We will also provide

some analytical arguments supporting these ¯ndings based on the modulational

instability analysis of the uniform state.
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2. Model and Numerical Calculation

Within the context of electronic dynamics under the in°uence of lattice vibrations,

the e®ective nonlinear Schr€odinger equation appears as an interesting tool that

allows a close investigation of the nonlinear electron wavepacket dynamics on dis-

tinct topologies. By considering an adiabatic approximation, the nonlinear term can

be considered as the on-site potential depending on the local electron density. Using a

tight-binding approach and considering localized orbital basis, the dynamics of the

electronic wavepacket can be described following the discrete nonlinear Schr€odinger

equation written as

i 
:
nðtÞ ¼ "n nðtÞ þ

X
m

Vnm mðtÞ þ �j nðtÞj2 nðtÞ; ð1Þ

where we used } ¼ 1.  nðtÞ is the wavevector coe±cient at the local orbital at site

n : j�ðtÞi ¼ P
n nðtÞjni. The sum is taken over the ¯rst nearest neighbors. Vnm

represents the energy hopping and "n is the on-site energy at site n. The dynamic

equations will be solved by using an eighth-order Runge–Kutta algorithm and

the wave function norm (NðtÞ ¼ P
nj nj2) is accompanied with an accuracy of

j1�NðtÞj < 10�8 to ensure the numerical accuracy.

To describe the spatial extent of the electron wavepacket, we calculate its par-

ticipation function de¯ned as

P ðtÞ ¼
XN
n¼1

j nðtÞj4
" #�1

; ð2Þ

P ðtÞ provides a measure of the fraction of sites over which the wavepacket is spread

at time t. P ðtÞ becomes equal to N for a wavepacket evenly distributed over the

entire system, while P ¼ 1 for a state located in a single site.

3. Results

In this paper, we consider the wavepacket initially uniformly distributed over the

entire lattice. Therefore, the initial wavepacket coe±cients are �n ¼ 1=N where N is

the number of sites. Our focus consists in investigating the stability of the uniform

wavepacket pro¯le and its relation with the degree of nonlinearity. We initially study

the wavepacket dynamics in a discrete chain with periodic boundary conditions. In

Fig. 1(a), we plot the normalized participation number P ðtÞ=N versus time t for

N ¼ 50 and � ¼ 0:3 and 0.6. We observe that, for � ¼ 0:3, the participation number

is constant for all times considered, thus indicating that the uniform wavepacket

remains stable. For � ¼ 0:6 the participation number exhibits an oscillating pro¯le,

which signals the instability of the wavepacket width. Such instability is related to

the mechanism of polaron formation in the underlying electron–phonon system.

Therefore, our calculations indicate that there is a critical value of the nonlinearity

(�c) below which the uniform wavepacket remains stable and spread over the entire

chain. For � > �c, a dynamic instability leads to an oscillating behavior of the
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participation function of the electronic wavepacket, which is associated with periodic

breathings. However, the participation function oscillates around a relatively large

value, indicating that the wavepacket remains extended, at least slightly above the

transition. We consider also two chains with distinct sizes and exactly the same value

of the nonlinear coupling (see Fig. 2(a)). For N ¼ 40, � ¼ 0:45 is weak enough to

keep the wavepacket stability and the participation number remains constant.

However, for N ¼ 50, the same nonlinear strength � ¼ 0:45 in strong enough to

trigger the wavepacket instability and periodic breathings emerge. As a result, the

critical nonlinearity �c decreases as the chain size increases. The size dependence of

the critical nonlinear strength was numerically determined, with the resulting curve

reported in Fig. 2(b). We found numerically that the critical nonlinearity decreases

proportional to 1=N. In Fig. 2(b), the circles represent the values of �c obtained

numerically for di®erent sizes of linear chains. The dotted curve represents a best

¯tting to a 1=N power-law.

We now extend our analysis of the wavepacket stability for the case of lattice

topologies on which the sites are distributed over a closed surface. In particular, we

consider the lattice topology of fullerene buckyballs. We initially consider the

wavepacket uniformly distributed over all fullerene sites and we follow numerically

its time-evolution. We pay particular attention to the characteristics of the transi-

tion from stable to unstable uniform wavepackets and its dependence on the

buckyball size. In Fig. 3, we show a schematic representation of two typical full-

erenes: namely C60 and C180. However, our study was extended to the whole

buckyball family ranging from N ¼ 20 up to N ¼ 720. The initial uniform wave-

packet still has coe±cients �n ¼ 1=N where N is the number of sites in a given

0 5000 10000 15000 20000
t

0.2

0.4

0.6

0.8

1

P
(t

)/
N

χ=0.3
χ=0.6

Fig. 1. The normalized participation number PðtÞ=N versus time t for linear chains with N ¼ 50 and
� ¼ 0:3 and 0.6. In our calculations, we considered the wavepacket initially distributed over the entire

chain. Therefore, the initial wavepacket has �n ¼ 1=N whereN is the number of sites. We observe that for

� ¼ 0:3 the participation number is constant for all times considered, thus indicating that the wavepacket

is stable. For � ¼ 0:6 the participation number exhibits an oscillating pro¯le, signaling the instability of
the uniform wavepacket.
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fullerene. In Fig. 4, we plot the scaled participation function P ðtÞ=N versus time t for

� ¼ 7 and 7.5. We have used the C60 topology for these calculations. We can observe

that there are two distinct regimes depending on the degree of nonlinearity. One of

these regimes is characterized by the stability of the wavepacket occupying the entire

buckyball. Consequently, the scaled participation function remains constant for all

times. In the other regime, the wavepacket focuses around a small fraction of the

buckyball sites, a phenomenon similar to the well-known wavepacket self-focusing.

For the case of C60, we can see through the evolution of the normalized participation

function P=N that the transition occurs for a typical value of the nonlinearity

0 5000 10000 15000 20000
t

0.5

0.6

0.7

0.8

0.9

1

P
(t

)/
N

N = 40 ; χ = 0.45
N = 50 ; χ = 0.45

(a)

20 40 60 80 100
N

0

0.2

0.4

0.6

0.8

1

χ c

Numerical calculations
best fitting

(b)

Fig. 2. (a) Normalized participation number PðtÞ=N versus time t for linear chains with distinct sizes and
degree of nonlinearity (� ¼ 0:45). We observe that forN ¼ 40, such nonlinear coupling is su±cient to keep

the wavepacket stability. However, for N ¼ 50, the uniform state becomes unstable and the participation

number develops oscillations, signaling the wavepacket breathing. (b) We numerically demonstrated that
the value �c that separates the stable phase from the unstable phase decreases as 1=N. Error bars are

smaller than the symbol sizes.

Fig. 3. Schematic representation of two fullerene buckyballs, namely C60 and C180.
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around �c ¼ 7:32. Further, no oscillations are observed above the transition. Instead

of developing breathings, as it occurs in a linear chain, there is a direct transition

from a stable uniform extend state to a strongly localized state. We numerically

determined the critical nonlinear strength governing this transition for the entire

buckyball family. We found that the critical value �c necessary to promote the

transition slightly decreases as the number of sites of the fullerene is increased, as

reported in Fig. 5. However, it saturates at a ¯nite value for very large buckyballs, in

contrast with the reported continuous decrease of the critical nonlinearity with the

size of linear chains. It is important to stress that the above features characterizes

the transition from stable to unstable initially uniform wavepackets. The in°uence

of the nonlinearity on the stability of initially localized or extended nonuniform

states is strongly dependent on the speci¯c initial wavepacket distribution.20

0 200 400 600 800
N

7.2

7.3

7.4

7.5

7.6

7.7

χ c

Fig. 5. The critical nonlinear strength separating the stable uniform state phase and the self-focusing

phase as a function of the number of sites in fullerene buckyballs. The critical value �c necessary to

promote the transition depicts a weak size dependence for fullerene buckyballs.

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1.0

P
(t

)/
N χ = 7.0

χ = 7.5

Fig. 4. Scaled participation function PðtÞ=N versus time t for � ¼ 7 and 7:5. We have considered here the

wavepacket uniformly distributed over a C60 geometry. We can observe that for � ¼ 7 the wavepacket

remains stable occupying the entire buckyball. For � ¼ 7:5, we observe that the wavepacket localizes over
a small fraction of sites, signaling a self-focusing phenomena.
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The above trends associated with the distinct size dependence in linear chains and

buckyballs of the nonlinear coupling above where a uniform wavepacket becomes

unstable can be understood under the light of a modulational instability analysis. As

the initial state is uniform, the discrete nature of the lattice is not relevant to describe

the general aspects related to its stability. Within this context, one may perform the

modulational instability analysis in the continuous version of the nonlinear

Schr€odinger equation, which may be put in the form

i
d 

dt
¼ r2 þ �j j2 ð3Þ

from which a linear diagonal term was dropped as it does not in°uence the wave-

function dynamics. The above continuous nonlinear Schr€odinger equation has as CW

solution  ðtÞ ¼  0e
�i�j 0j2t. In order to investigate its stability, one adds a small

perturbation to its amplitude as

 ðr; tÞ ¼ ½ 0 þ "ðr; tÞ�e�i�j 0j2t: ð4Þ
The time evolution of the perturbation "ðr; tÞ obeys

i
d"

dt
¼ r2"þ �j 0j2ð"þ "�Þ; ð5Þ

where "� stands for the complex conjugate of " and nonlinear terms are disregarded.

The above equation has harmonic solutions in the form

"ðr; tÞ ¼ Aeiðk�rþ�tÞ þBe�iðk�rþ�tÞ; ð6Þ
subjected to the dispersion relation

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðk2 � 2�j 0j2Þ

q
: ð7Þ

According to the above dispersion relation, harmonic perturbations with large

wavevectors remain stable (real �), while those with k < k
MI

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j 0j2

p
grow ex-

ponentially (imaginary �). As a consequence, the CW solution will be unstable

whenever k
MI

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=N

p
> 2�=L, where L is the typical linear dimension of the

system and 2�=L is the minimum allowed wavevector for an harmonic perturbation.

This last expression ultimately determines a characteristic nonlinear strength �
MI

¼
2�2N=L2 above which the CW solution is unstable. In linear chains N / L, leading

to �
MI

/ 1=N . In large chain sizes, the critical modulational instability threshold is

quite small. Although the uniform wavepacket becomes unstable above �MI , the

nonlinear coupling is not strong enough to promote the wavepacket localization and

breathing pattern develops. According to the dispersion relation (Eq. 7) the period of

the breathing oscillations scales as � / ð�� �
MI
Þ�1=2 above the modulational in-

stability threshold. On the other hand, N / L2 in a buckyball geometry. In this case,

one results with a size-independent characteristic nonlinear strength for the mod-

ulational instability of the CW solution. This critical value is large enough to drive
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the wavepacket toward its strong localization. These analytical results are in full

agreement with the numerical data.

4. Summary and Conclusions

In summary, we study the instability of an electronic wavepacket evolving in discrete

chains and fullerene buckyballs. In the case of the discrete linear chain, we found that

the value of �c separating the phase of stable from unstable wavepackets pro¯le

decays proportional to 1=N , with the wavepacket developing breathings right above

the instability threshold. In fullerenes, there is also a �c below which the electronic

wavepacket remains uniformly distributed. For values of nonlinearity above �c, the

electronic wavepacket focuses around a small fraction of the buckyball sites. While in

linear chains this critical nonlinear coupling decreases monotonically with the chain

size, in fullerenes �c displays a very weak size dependence. We demonstrated that the

distinct reported wavepacket dynamics in linear chains and buckyballs can be un-

derstood within the framework of the modulational instability phenomenon. The

present study can be extended to the analysis of the stability of uniform wavepackets

in other nanoscopic structures (nanotubes, nanostripes, etc) of current scienti¯c and

technological interest, as well as to the stability of soliton-like solutions. Within this

context, the relaxation time of the nonlinearity shall be a relevant ingredient to be

included in the stability analysis.23 These are topics that deserve to be investigated in

the near future in order to provide a more complete scenario regarding the electronic

wavepacket dynamics in nanostructures.
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