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In this paper, we study the dynamics of a one-electron in a one-dimensional (1d) alloy with a

correlated Ornstein–Uhlenbeck (OU) disorder distribution. The model considered here corre-

sponds to an alloy with three types of atoms where the position of each atom is obtained using a

stochastic rule based on the OU process. We analyze in detail the e®ect of this correlated
disorder in the optical absorption spectrum and the level spacing statistics near the band center.

Our results reveal a new collection of optical absorption peaks. We explain in details the

appearance of each peak. Our calculations about the level spacing's distribution reveals a
Poisson distribution thus contradicting previous statements about the existence of extended

states in ternary electronic models with correlated disorder distribution.
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1. Introduction

The dynamics of a one-electron in disordered lattices is a key issue which has

attracted the scienti¯c interest during several decades.1–24 According to the

Anderson scaling theory there are no extended eigenstates in low-dimensional sys-

tems for any degree of uncorrelated disorder. Since the end of 1980s, it has been

shown that low-dimensional disordered systems can support extended states or a
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localization–delocalization transition in the presence of short-or long-range correla-

tions in the disorder distribution.25–48 Furthermore, the theoretical prediction that it

is possible to see the localization in a random multilayered ¯lter49,50 opened a wide

¯eld to investigate the e®ects of correlated disorder in optical systems. The theo-

retical formalisms of random dielectric multilayers can be mapped on the one-elec-

tron Hamiltonian in a disordered media with close connections with the random

dimers and o®-diagonal disorder versions of the Anderson model.51 The e®ect of

correlated disorder within general transport problems, not only for models with one-

electron, became a very interesting ¯eld of study. For example, it was studied the

e®ects of correlated disorder on the magnon eigenstates in random ferromagnetic52,53

and collective vibrational motion of one-dimensional (1d) disordered harmonic

chains.54–58 In both cases, it was demonstrated that the correlated disorder lead to a

new set of nonscattered modes. In general, previous works about correlated disorder

were done considering systems in which the site energies are uniformly distributed in

a ¯nite range ½�W ;W �. Some authors44,45,59–61 have considered models where the on-

site energy can assume two or three di®erent values i.e., the binary and ternary

models, respectively. In particular, the Anderson model with long-range correlated

disorder chosen as a ternary sequence was studied in Ref. 45. If the sequence of the

on-site energies is generated totally random, the system is an insulator. Nevertheless,

by creating a ternary diagonal disorder with long-range correlations, it was observed

a localized–delocalized phase transition.45 The e®ect of long-range correlations in the

sequence of capacitances of classical transmission lines (TL) has been studied by

Lazo and Diez.59,60 To generate the ternary correlated distribution of capacitances it

was used the Fourier ¯ltering method59 and also the Ornstein–Uhlenbeck (OU)

process.60 In both cases, it was observed a transition from nonconducting to con-

ducting state of the TL induced by strong correlations. More recently, a 1d classical

ternary harmonic chain with the mass distribution constructed from an OU process

was studied.61 The localization aspects of all vibrational eigenstates were obtained by

using the transfer matrix formalism. The authors concluded that only the zero fre-

quency mode can propagate through the chain, thus contradicting previous

works.45,59,60

Moreover, the e®ect of correlated disorder on the optical spectroscopy

properties62–68 is a key problem in the context of condensed matter physics. Usually,

it is well-known that the optical spectroscopy fails in detecting localization–delo-

calization transitions. However, in Ref. 64 it was numerically reported an anomalous

behavior of the absorption spectrum in a 1d lattice with long-range correlated

diagonal disorder. The double-peak absorption spectrum found is the unique spec-

troscopic tool to monitor the Anderson transition. Furthermore, in Ref. 65 a double-

peak absorption spectrum was numerically observed in 1d lattice with long-range

o®-diagonal correlated disorder. In Ref. 66, a detailed study about optical properties

in 1d models with heavy-tailed Levy disorder distribution was done. The authors

found a broadening of optical line and a nonuniversal scaling of the distribution of

exciton localization lengths. The scaling of the optical absorption bandwidth and the
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nonuniversality of the localization length within models with Levy disorder distri-

bution were re-visited in Refs. 67 and 68. We would like to stress that from the best of

our knowledge, the study of optical spectroscopy properties in low-dimensional

systems with ternary correlated disorder is completely absent in the literature.

We emphasize that the existence or nonexistence of a phase transition in

ternary models with correlated disorder represents a interesting and controversial

issue45,59–61 with considerable interest from the experimental and theoretical point of

view. The possibility to generate real systems with a ternary correlated disorder can

be a possible tools to compare theory and experiment procedures and also allows

designing new materials with adjustable properties. However, a more detailed sta-

tistical analysis of the eigenmodes and a description of the optical properties in

electronic ternary models is still absent. In this paper, we will provide some advances

along these lines. We will study the optical absorption and the levels spacing dis-

tribution in 1d models with a ternary correlated disorder distribution. Here, we will

study a 1d model with a ternary diagonal disorder distribution following the OU

process. We construct the ternary diagonal disorder distribution by initially gener-

ating the OU process and mapping it into a sequence of three di®erent values. The

probability of each value is controlled by a ¯xed parameter b. In that way, we will

generate a ternary diagonal potential with long-range correlations. We perform exact

numerical diagonalization to compute the level spacing distribution and the optical

absorption spectrum. Our results shown that the level spacing distribution near the

band center shows a well de¯ned Poisson distribution. This result indicate that all

eigenstates are localized thus contradicting previous works that pointed out the

existence of extended states in models with ternary diagonal correlated disorder.45

Within the context of optical absorption spectrum our results show a set of unex-

pected peaks within absorption spectrum. We explain in detail the origin of each

peak.

2. Model and Formalism

We consider a tight-binding one-electron Hamiltonian with hopping J and on-site

disorder distribution �n,
69

H ¼
XN
n¼1

�njnihnj � J
XN�1

n¼1

ðjnihnþ 1j þ jn� 1ihnjÞ; ð1Þ

where jni is a Wannier state localized at site n with the on-site energy �n. The inter-

site coupling J is restricted to nearest-neighbors and assumed to be uniform over the

entire lattice (J ¼ 1). The source of disorder is the stochastic °uctuations of the on-

site terms, which we are going to consider to follow the OU process.60,61 The OU

process is de¯ned by the stochastic di®erential equation:

dx

dt
¼ ��xðtÞ þ

ffiffiffiffi
C

p
�ðtÞ; ð2Þ

Absorption Spectra and Level Spacing Statistics
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where � is the viscosity coe±cient, C is the di®usion coe±cient and �ðtÞ is the

stochastic term.60,61 �ðtÞ is a Gaussian white noise generated by the Box–Muller

process with the following properties: h�ðtÞi ¼ 0 and h�ðtÞ�ðt�Þi ¼ �ð�Þ. This sto-

chastic process contains correlations between each step de¯ned as hxðtÞxðt�Þi ¼
C
2� e

��� .60,61 In order to generate the diagonal disorder from the OU process we will

consider the numerical formalism obtained in Ref. 70 based on the discrete version of

Eq. (2). In the discrete form, xðtÞ is written as xn where n denotes the time step

number (t ¼ n�t). Therefore, the discrete form of Eq. (2) is given by70

xnþ1 ¼ ðe���tÞxn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2�
ð1� e�2��tÞ

s264
3
75�n: ð3Þ

Using the Box–Muller algorithm, we calculate �n in the following way

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

1

rn

s0
@

1
A cos 2�an; ð4Þ

where rn and an are uniform random numbers de¯ned in the interval ½0; 1�. We have

normalized xn in order to impose zero average and keep the variance equal to unity.

Following Refs. 60 and 61, we will consider C ¼ �2 and, therefore, the degree of

correlation of the OU process becomes controlled by a single parameter �. For � !
1 the OU sequence evolves into the Gaussian white noise. For � ! 0 the degree of

correlation of the disordered sequence will increase. Using the normalized sequence

xn generated by OU process, we will construct a ternary on-site energy distribution

as follows

�n ¼
�� if xn < �b;

0 if � b � xn � b;

� if xn > b;

8<
: ð5Þ

where b > 0 controls the probability of each possible value of the on-site energy. The

width of the disorder distribution depends on the value of �, a tunable parameter.60,61

2.1. Magnitudes of interest

In order to investigate the absorption spectrum and the level spacing distribution for

this model we perform an exact diagonalization procedure on ¯nite chains. The

absorption spectrum is de¯ned as,64,65

AðEÞ ¼ 1

N

X
�

�ðE � E�ÞF�; ð6Þ

where F� is the oscillator strength associated with the eigenvalue �, namely

F� ¼ ½Pn  nðE�Þ�2. When the o®-diagonal term is negative and the diagonal is a

disordered uncorrelated distribution, the eigenstates with higher oscillator strength

are those at the bottom of the band. Moreover, we will analyze the level spacing

M. O. Sales et al.
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statistics near the band center. In one-electron systems, localized states are uncor-

related in energy and distributed following a Poisson law PðsÞ ¼ e�s, where s is the

level spacing measured in units of the mean spacing. In contrast, delocalized eigen-

functions repel each other and their level spacing distribution assumes the Wigner

form PðsÞ / se�Cs2 .71,72 At the Anderson transition a new universal critical statistics

intermediate between Wigner and Poisson has been suggested as a consequence of

the multifractality of critical wave functions.73 To obtain the level spacing distri-

bution, we used an energy window near the band center ð�0:5; 0:5Þ. A spectral

unfolding procedure was employed to keep the average level spacing equal to unity in

each segment of the energy window.73

3. Results and Discussions

To solve numerically Eq. (6) we used N ¼ 10 000 sites, � ¼ 1 and 100 realizations of

disorder for each value of � and b. Figures 1 and 2 show the output of these calcu-

lations. We observe that for b � 0 and all � values considered here, the absorption

spectrum displays a single peak slightly above the lower band edge E ¼ �2 of the

periodic lattice. Our results suggest that only the lowest states of the band contribute

to the absorption spectrum. Therefore, we have obtained a similar trend observed to

those that was obtained in 1d systems with weak diagonal disorder. For all � con-

sidered in Figs. 1(a) and 1(b) and b ! 0 we observed that the absorption spectrum

displays a wide peak slightly under the lower band edge E ¼ �2. Therefore, for b ! 0

we recovered the absorption spectrum similar to those obtained in a 1d lattice with

an uncorrelated diagonal disorder. In Figs. 2(a) and 2(b) we show our calculations for

� ! 0 (i.e. the strongly correlated limit). We can see that for small values of b, our

results show that AðEÞ displays an unexpected set of narrow peaks. We also observed

(a) (b)

Fig. 1. (Color online) Numerical calculations of Eq. (6) by using N ¼ 10 000 sites, � ¼ 1, 100 realizations

of disorder, � ¼ 1 and 3. We observe that for b � 0 in both (a), (b), the absorption spectrum displays a

single peak slightly above the lower band edge E ¼ �2. At this limit, the value �n ¼ 0 is most frequent

than other values and therefore, we recovered a 1d model with weak diagonal disorder. This framework
corroborates this single narrow peak found. For b ! 0 the OU process becomes an uncorrelated series

therefore, we will obtain also a uncorrelated binary diagonal potential. Therefore, it explains the single

wide peak in the absorption spectrum at this limit.

Absorption Spectra and Level Spacing Statistics
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that at this limit of strong correlations (� ! 0) depending on the b value, we can get

to a well de¯ned triplet (about b � 0:5). We emphasize that in disordered models

traditionally is obtained a single peak around the lower state.64,65

To understand this new set of peaks of the absorption spectrum we will need to

study in details the local properties of the diagonal disorder and apply a heuristic

procedure.64 Let us start by remembering that the parameter b governs the proba-

bility distribution of each value ��; 0; � of the diagonal distribution. For all values of
� and b > 1, the value �n ¼ 0 is most frequent than the other values and therefore, we

recovered an 1d model with weak diagonal disorder. The single narrow peak found in

Figs. 1(a) and 1(b) for large b is in good agreements with the AðEÞ for a 1d model

with weak diagonal disorder.64 For b ! 0 we obtained a binary disorder distribution

i.e. two values (��; �) randomly distributed. For � � 0 and b ! 0 the OU process

becomes uncorrelated and the binary sequence of values (��; �) obtained using the

mapping de¯ned in Eq. (5) becomes also an uncorrelated sequence. Therefore, it

explains the single wide peak in the absorption spectrum found in Figs. 1(a) and 1(b)

for � � 0 and b ! 0. For � ! 0 and b ! 0 (see Figs. 2(a) and 2(b)) we can also

follow a similar analysis to understand the double peak structure found. For � ! 0

the OU process becomes correlated. Previous works60,70 have demonstrated that the

OU process is characterized by a power law spectrum SðkÞ / k�2 for � ! 0. We

know30,74,75 that a stochastic sequence with power law spectrum SðkÞ / k�2 has its

increments in the edge between the persistent and anti-persistent behavior. For-

mally, a random sequence becomes persistent if its spectrum behaves as SðkÞ / k��

with � > 2. The value � ¼ 2 is the crossing point between the persistent and anti-

persistent behaviors. Therefore, at this limit the random sequence displays a initial

smoothing and starts to follow a harmonic-like behavior. In this way, when � ! 0

and b ! 0 the diagonal terms �n exhibit an almost regular structure of ¯nite seg-

ments with values �� and �. Therefore, by using the heuristic arguments considered

in Ref. 64 we can decouple this 1d model in a collection of two inter-penetrating

(a) (b)

Fig. 2. (Color online) Numerical investigation of the absorption spectrum at limit of strong correlations

(� ! 0). Calculations of Eq. (6) were done by using N ¼ 10 000 sites, � ¼ 1 and 100 realizations of

disorder. We can see that for small b we obtained a nonintuitive absorption spectrum pro¯le. We can see

that our results for b � 0:5 indicate the existence of a well de¯ned triplet. For b ! 0 our calculations
reveals a well de¯ned doublet.

M. O. Sales et al.
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chains, one of them with on-site energy �� and another one with diagonal term �.

Once we have used � ¼ 1 there are two sub-band, the ¯rst one is within the interval

½�3; 1� and a second one within the interval ½�1; 3�. Following Ref. 64, the absorption
spectrum of such a system is expected to have two peaks caused by the transitions

from the ground state to the bottom state of each sub-band. We stress that these

values i.e. �3 and �1 are in good agreement with the numerical calculations pre-

sented in Figs. 2(a) and 2(b) for b ! 0. Moreover, the triplet observed in the ab-

sorption spectrum for b � 0:5 (see Figs. 2(a) and 2(b)) can also be understand by

using a similar methodology. For b � 0:5, the probability of each value in the di-

agonal distribution is approximately the same therefore, we can decouple the system

in three inter-penetrating chains, each of them with on-site energies ��, 0 and �.

For the value � ¼ 1 used in our calculations we will have three sub-bands,

respectively ½�3; 1�, ½�2; 2� and ½�1; 3�. Following again Ref. 64, the absorption

spectrum is expected to have three peaks related to the bottom state of each sub

band i.e. �3;�2;�1. This prediction is again in good agreements with our numerical

results (see Figs. 2(a) and 2(b)). Before concluding this part, it is interesting to study

the dependence of the optical properties with the � parameter. We can repeat the

heuristic arguments for b ! 0 and any � to obtain that the positions of the peaks

should be respectively �2J � � and �2J þ �. In order to a numerically veri¯cation of

our arguments we will solve Eq. (6) for N ¼ 10 000 sites, 100 realizations of disorder

and � ¼ 2 and 3. In Fig. 3, we plot the results of these calculations. We can observe

that our heuristic methodology are in good agreements with our numerical results.

As the � value is increased, the distance between each peak increases following our

heuristic prediction.

In Figs. 4 and 5 we plot our results for the level spacing statistics near of the band

center. Calculations were done for � ¼ 1 and Figs. 4(a) and 4(b) with � ¼ 1; 3 and

Figs. 5(a) and 5(b) with � ¼ 0:05; 0:01. We stress that we have used in our

(a) (b)

Fig. 3. (Color online) Numerical calculations of the absorption spectrum for N ¼ 10 000 sites, 100 rea-

lizations of disorder, � ¼ 2 and 3. Our numerical calculations con¯rm that the optical absorption peak
structure is strongly dependent of the possible transitions from the ground state to the bottom state of each

sub-band. For b ! 0 the positions of the two peaks is in good agreement with the bottom of each sub-band

i.e. ½�2J � �� and ½�2J þ ��.

Absorption Spectra and Level Spacing Statistics
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calculations an energy region around the band center ð�0:5; 0:5Þ and also a spectral

unfolding procedure to keep the average level spacing equal to unity.71–73,76 We

observe that for all values of � considered here, our numerical calculations for b � 0

reveals a level spacing statistics similar to those found in chains without disorder,73

i.e. a single peak around the average level spacing unity (s ¼ 1). We stress that in

Ref. 61, it was pointed out the existence of a disorder–order transition in ternary

OU sequences for b > 4. Therefore, our calculations of the level spacing statistics

corroborates the existence of this disorder–order transition for large b.61 For the

limit b ! 0 all calculations of PðsÞ indicate a standard Poisson distribution PðsÞ ¼
e�s even for strong correlations � ! 0 (see Figs. 4 and 5). Therefore, the Poisson

distribution obtained in our calculations for b ! 0 unveil the absence of extended

electronic eigenstates in ternary alloys with OU correlated disorder distribution. We

emphasize that our results contradict previous works that pointed out the existence

(a) (b)

Fig. 4. (Color online) Numerical calculations of the level spacing statistics near of the band center for

� ¼ 1 and � ¼ 1; 3. Our numerical calculation for b � 0 reveals a single peak around the average level

spacing unity (s ¼ 1). This level spacing statistics is similar to that found in chains without disorder. For

the limit b ! 0 all calculations of the P ðsÞ indicate a standard Poisson distribution P ðsÞ ¼ e�s thus
corroborating the localized nature of eigenstates.

(a) (b)

Fig. 5. (Color online) Level spacing statistics near of the band center for � ¼ 1 and � ¼ 0:05; 0:01. For

large b we obtained a peak around s ¼ 1, a clear signature of a pure chain. For b ! 0, even at the limit of
strong correlations, our results reveals a Poisson Law behavior thus corroborating the localized nature of

all eigenstates.

M. O. Sales et al.
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of an Anderson phase transition in 1d electronic models with ternary correlated

disorder.52

4. Summary and Conclusions

In summary, we have studied a 1d ternary electronic chain with the on-site distri-

bution constructed from an OU process. The ternary diagonal disorder distribution

was generated from a mapping of the correlated OU process into a sequence of three

di®erent values. The probability of each value is controlled by a ¯xed parameter b. In

that way, we have generated a ternary diagonal potential with long-range correla-

tions. By using exact diagonalization, we computed the optical absorption spectrum

and the level spacing distribution for this ternary model. Within the absorption

spectrum context, our results indicating a new collection of peaks within the band of

energy. We have shown that the kind of correlations considered here can induce the

appearance of several well de¯ned peaks, including peaks far from the bottom of the

band. We have explained in detail the origin of each peaks by considering the possible

transitions from the ground state to the bottom state of each allowed sub-band.

Moreover, we demonstrated that it is possible to control the position of each

absorption spectrum peak by changing the on-site disorder intensity. We stress that

this multipeak structure of the absorption spectrum was never observed before in 1d

disordered models. To ¯nishing, our results about the level spacing distribution

reveals a Poisson distribution for small values of b. We stress that this result are in

good agreement with previous statements about the absence of extended states in

ternary models with OU correlated disorder distribution.61 Therefore, our calcula-

tions contradict previous works45,59,60 that pointed out the existence of an Anderson

metal-insulator phase transition in models with ternary correlated disorder distri-

bution. We stress that the choice of the OU process as the source of disorder does not

restricts our main results to this class of long-range correlated disorder. In general

lines, the OU process consists of an easy way to generate a disorder distribution with

long-range correlations. Basically, any random process with power law spectral

density could be used as the source of disorder to construct the ternary atomic

distribution with long-range correlations. Therefore, based on our present calcula-

tions, we are con¯dent that our results are valid for another ternary disorder dis-

tributions with long-range correlations. We stress that it is possible37,38 by using

molecular beam epitaxy, the construction of a correlated disordered array of three

types of barriers following the correlations rules considered here. In fact, we think

that an experimental setup like this should be very useful to reproduce our results

about the optical absorption in the presence of a correlated ternary disorder distri-

bution. However, within optical absorption framework, we stress that we have the-

oretically calculated the absorption by Frenkel excitons while that at semiconductor

super-lattices we can found only Wannier–Mott excitons due to the large dielectric

constant generally considered. We expect that the present work will stimulate fur-

ther theoretical and experimental investigations along this line.
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